Personalized Tweet Ranking Based on AHP: A Case Study of Micro-blogging Message Ranking in T.Sina

Yuhong Guo, Li-Fang Kang, Tie Shi
{"title":"Personalized Tweet Ranking Based on AHP: A Case Study of Micro-blogging Message Ranking in T.Sina","authors":"Yuhong Guo, Li-Fang Kang, Tie Shi","doi":"10.1109/WI-IAT.2012.38","DOIUrl":null,"url":null,"abstract":"Micro-blog's handiness is besieging users with overloaded short snippets of tweets surging into their page. How to evaluate quality of tweets with limited content and rank them to direct user attention is a new significant topic. In this paper, we study the problem of user-specific tweet evaluation and ranking. We propose a comprehensive, personalized tweet ranking mechanism (Tweet Rank) with a technique of AHP (Analytic Hierarchy Process) in operational research. Based on mathematics and psychology, the AHP can quantify the weight of each impact factor and model user blur preference precisely. Case study in Chinese micro-blog platform of T.sina showed that Tweet Rank greatly outperformed time-based ranking used in T.Sina, improving percentage of interesting content in Top10 to 60% from 20%.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Micro-blog's handiness is besieging users with overloaded short snippets of tweets surging into their page. How to evaluate quality of tweets with limited content and rank them to direct user attention is a new significant topic. In this paper, we study the problem of user-specific tweet evaluation and ranking. We propose a comprehensive, personalized tweet ranking mechanism (Tweet Rank) with a technique of AHP (Analytic Hierarchy Process) in operational research. Based on mathematics and psychology, the AHP can quantify the weight of each impact factor and model user blur preference precisely. Case study in Chinese micro-blog platform of T.sina showed that Tweet Rank greatly outperformed time-based ranking used in T.Sina, improving percentage of interesting content in Top10 to 60% from 20%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AHP的个性化推文排名——以新浪微博消息排名为例
微博的便捷性让用户陷入了困境,大量的短消息涌入他们的页面。如何对内容有限的推文进行质量评价,并对其进行排序,引导用户关注是一个新的重要课题。在本文中,我们研究了针对用户的推文评价和排名问题。本文运用运筹学中的层次分析法(AHP)提出了一种全面、个性化的推文排名机制(tweet Rank)。基于数学和心理学的层次分析法可以量化各影响因素的权重,准确地建立用户模糊偏好模型。新浪微博中文微博平台的案例研究表明,twitter排名大大优于新浪微博基于时间的排名,将Top10中有趣内容的比例从20%提高到60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conceptualization Effects on MEDLINE Documents Classification Using Rocchio Method Keyword Proximity Search over Large and Complex RDF Database Cognitive-Educational Constraints for Socially-Relevant MALL Technologies Mining Criminal Networks from Chat Log Inferring User Context from Spatio-Temporal Pattern Mining for Mobile Application Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1