Short-term load forecasting using a chaotic time series

S. P. Michanos, A. Tsakoumis, P. Fessas, S. Vladov, V. Mladenov
{"title":"Short-term load forecasting using a chaotic time series","authors":"S. P. Michanos, A. Tsakoumis, P. Fessas, S. Vladov, V. Mladenov","doi":"10.1109/SCS.2003.1227083","DOIUrl":null,"url":null,"abstract":"A new approach to short-term load forecasting (STLF) in power systems is described in this paper. The method uses a chaotic time series and artificial neural network. The paper describes chaos time series analysis of daily power system peak loads. Nonlinear mapping of deterministic chaos is identified by multilayer perceptron (MLP). Using embedding dimension and delay time, an attractor in pseudo phase plane and an ANN model trained by this attractor are constructed. The proposed approach is demonstrated by an example.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1227083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

A new approach to short-term load forecasting (STLF) in power systems is described in this paper. The method uses a chaotic time series and artificial neural network. The paper describes chaos time series analysis of daily power system peak loads. Nonlinear mapping of deterministic chaos is identified by multilayer perceptron (MLP). Using embedding dimension and delay time, an attractor in pseudo phase plane and an ANN model trained by this attractor are constructed. The proposed approach is demonstrated by an example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混沌时间序列的短期负荷预测
本文提出了一种电力系统短期负荷预测的新方法。该方法采用混沌时间序列和人工神经网络。本文描述了电力系统峰值负荷的混沌时间序列分析。采用多层感知器(MLP)识别确定性混沌的非线性映射。利用嵌入维数和延迟时间,在伪相平面上构造了一个吸引子,并用该吸引子训练了一个人工神经网络模型。最后通过一个算例对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm based dynamic channel assignment for cellular radio networks Voltage controlled integrators/differentiators using current feedback amplifier A low noise-high counting rate readout system for X-ray imaging applications Implementation of 3D-DCT based video encoder/decoder system Periodic chaotic spreading sequences with better correlation properties than conventional sequences - BER performances analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1