A segmental time-alignment technique for text-speech synchronization

F. Vignoli, F. Lavagetto
{"title":"A segmental time-alignment technique for text-speech synchronization","authors":"F. Vignoli, F. Lavagetto","doi":"10.1109/ICCIMA.1999.798565","DOIUrl":null,"url":null,"abstract":"The bimodal acoustic-visual effect is of extreme importance in human face-to-face communication; it has been broadly investigated and the improvement in understanding when visual cues are integrated with speech has been clearly demonstrated, with particular emphasis in noisy environments. In this paper, we propose a novel synchronization procedure for speech and text, consisting of a neural network-based acoustic segmentation method for phoneme classes and a phonetic-acoustic time alignment algorithm which we call Segmental Time-Alignment (STA). The proposed algorithm is fast and speaker-independent since it uses neural networks trained to discriminate among broad phoneme classes. This technique has been used to animate the MPEG-4 compliant DIST face model.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The bimodal acoustic-visual effect is of extreme importance in human face-to-face communication; it has been broadly investigated and the improvement in understanding when visual cues are integrated with speech has been clearly demonstrated, with particular emphasis in noisy environments. In this paper, we propose a novel synchronization procedure for speech and text, consisting of a neural network-based acoustic segmentation method for phoneme classes and a phonetic-acoustic time alignment algorithm which we call Segmental Time-Alignment (STA). The proposed algorithm is fast and speaker-independent since it uses neural networks trained to discriminate among broad phoneme classes. This technique has been used to animate the MPEG-4 compliant DIST face model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文本-语音同步的分段时间对齐技术
双峰声视效果在人类面对面交流中具有极其重要的意义;它已经被广泛地研究过,当视觉线索与语言相结合时,理解能力的提高已经得到了清楚的证明,特别是在嘈杂的环境中。在本文中,我们提出了一种新的语音和文本同步过程,包括基于神经网络的音素类声学分割方法和声声时间对齐算法,我们称之为分段时间对齐(STA)。由于该算法使用经过训练的神经网络来区分广泛的音素类别,因此该算法快速且与说话人无关。该技术已被用于动画MPEG-4兼容的DIST面部模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modular rough fuzzy MLP: evolutionary design Indian language multimedia and information retrieval An image understanding system for various images based on multi-agent architecture End-to-end simulation of VBR traffic over ATM networks using CIPP network traffic model Fuzzy approach to recognize handwritten Tamil characters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1