{"title":"Modular rough fuzzy MLP: evolutionary design","authors":"Pabitra Mitra, S. Mitra, S. Pal","doi":"10.1109/ICCIMA.1999.798511","DOIUrl":null,"url":null,"abstract":"The article describes a way of designing a hybrid system for classification and rule generation, integrating rough set theory with a fuzzy MLP using an evolutionary algorithm. An l-class classification problem is split into l two-class problems. Crude subnetworks are initially obtained for each of these two-class problems via rough set theory. These subnetworks are then combined and the final network is evolved using a GA with restricted mutation operator which utilizes the knowledge of the modular structure already generated, for faster convergence.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The article describes a way of designing a hybrid system for classification and rule generation, integrating rough set theory with a fuzzy MLP using an evolutionary algorithm. An l-class classification problem is split into l two-class problems. Crude subnetworks are initially obtained for each of these two-class problems via rough set theory. These subnetworks are then combined and the final network is evolved using a GA with restricted mutation operator which utilizes the knowledge of the modular structure already generated, for faster convergence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模块化粗糙模糊MLP:进化设计
本文描述了一种设计分类和规则生成混合系统的方法,利用进化算法将粗糙集理论与模糊MLP相结合。一个l类分类问题被分成1个两类问题。利用粗糙集理论,初步得到了这两类问题的粗糙子网络。然后将这些子网络组合起来,并使用具有限制突变算子的遗传算法进行最终网络的进化,该算法利用已经生成的模块化结构的知识,以实现更快的收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modular rough fuzzy MLP: evolutionary design Indian language multimedia and information retrieval An image understanding system for various images based on multi-agent architecture End-to-end simulation of VBR traffic over ATM networks using CIPP network traffic model Fuzzy approach to recognize handwritten Tamil characters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1