Collaborative filtering by sequential extraction of user-item clusters based on structural balancing approach

Katsuhiro Honda, A. Notsu, H. Ichihashi
{"title":"Collaborative filtering by sequential extraction of user-item clusters based on structural balancing approach","authors":"Katsuhiro Honda, A. Notsu, H. Ichihashi","doi":"10.1109/FUZZY.2009.5277251","DOIUrl":null,"url":null,"abstract":"This paper considers a new approach to user-item clustering for collaborative filtering problems that achieves personalized recommendation. When user-item relations are given by an alternative process, personalized recommendation is performed by finding user-item neighborhoods (co-clusters) from a rectangular relational data matrix, in which users and items have mutually positive relations. In the proposed approach, user-item clusters are extracted one by one in a sequential manner via a structural balancing technique, used in conjunction with the sequential fuzzy cluster extraction method.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper considers a new approach to user-item clustering for collaborative filtering problems that achieves personalized recommendation. When user-item relations are given by an alternative process, personalized recommendation is performed by finding user-item neighborhoods (co-clusters) from a rectangular relational data matrix, in which users and items have mutually positive relations. In the proposed approach, user-item clusters are extracted one by one in a sequential manner via a structural balancing technique, used in conjunction with the sequential fuzzy cluster extraction method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构平衡方法的用户-项目聚类顺序抽取协同过滤
针对协同过滤问题,提出了一种新的用户项目聚类方法,以实现个性化推荐。当用户-物品关系由替代过程给出时,通过从矩形关系数据矩阵中寻找用户-物品邻域(共聚类)来执行个性化推荐,其中用户和物品具有相互积极的关系。在提出的方法中,通过结构平衡技术,结合顺序模糊聚类提取方法,以顺序的方式逐一提取用户-项目聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of a hybrid controller for a multi-input multi-output magnetic suspension system Fuzzy CMAC structures Hybrid SVM-GPs learning for modeling of molecular autoregulatory feedback loop systems with outliers On-line adaptive T-S fuzzy neural control for active suspension systems Analyzing KANSEI from facial expressions with fuzzy quantification theory II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1