On prediction of moving-average processes

L. Shepp, D. Slepian, A. Wyner
{"title":"On prediction of moving-average processes","authors":"L. Shepp, D. Slepian, A. Wyner","doi":"10.1017/S0001867800050163","DOIUrl":null,"url":null,"abstract":"Let {X<inf>n</inf>} be a discrete-time stationary moving-average process having the representation where the real-valued process (Y<inf>n</inf>) has a well-defined entropy and spectrum. Let ∊<sup>∗2</sup><inf>k</inf> denote the smallest mean-squared error of any estimate of X<inf>n</inf> based on observations of X<inf>n–1</inf>, X<inf>n–2</inf>, …, X<inf>n–k</inf>, and let ∊<sup>∗2</sup><inf>klin</inf>, be the corresponding least mean-squared error when the estimator is linear in the k observations. We establish an inequality of the form where G(Y) ≤ 1 depends only on the entropy and spectrum of {Y<inf>n</inf>}. We also obtain explicit formulas for ∊<sup>∗2</sup><inf>k</inf> and ∊<sup>∗2</sup><inf>klin</inf> and compare these quantities graphically when M = 2 and the {Y<inf>n</inf>} are i.i.d. variates with one of several different distributions. The best estimators are quite complicated but are frequently considerably better than the best linear ones. This extends a result of M. Kanter.","PeriodicalId":447574,"journal":{"name":"The Bell System Technical Journal","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bell System Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0001867800050163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Let {Xn} be a discrete-time stationary moving-average process having the representation where the real-valued process (Yn) has a well-defined entropy and spectrum. Let ∊∗2k denote the smallest mean-squared error of any estimate of Xn based on observations of Xn–1, Xn–2, …, Xn–k, and let ∊∗2klin, be the corresponding least mean-squared error when the estimator is linear in the k observations. We establish an inequality of the form where G(Y) ≤ 1 depends only on the entropy and spectrum of {Yn}. We also obtain explicit formulas for ∊∗2k and ∊∗2klin and compare these quantities graphically when M = 2 and the {Yn} are i.i.d. variates with one of several different distributions. The best estimators are quite complicated but are frequently considerably better than the best linear ones. This extends a result of M. Kanter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动平均过程的预测
设{Xn}是一个离散时间平稳移动平均过程,其表示为实值过程(Yn)具有定义良好的熵和谱。设∗2k表示基于Xn - 1, Xn - 2,…,Xn - k的观测值对Xn的任意估计的最小均方误差,设∗2klin表示当估计量在k个观测值中为线性时对应的最小均方误差。我们建立了一个不等式,其中G(Y)≤1只依赖于{Yn}的熵和谱。我们也得到了在M = 2且{Yn}为i.i.d变量时,∗2k和∗2klin的显式公式,并以图形比较了这些量与几种不同分布之一的关系。最好的估计器相当复杂,但通常比最好的线性估计器要好得多。这扩展了M. Kanter的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acronyms and abbreviations Acronyms and abbreviations Time-Compression Multiplexing (TCM) of three broadcast-quality TV signals on a satellite transponder Theory of reflection from antireflection coatings Equivalent queueing networks and their use in approximate equilibrium analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1