Texture image segmentation using complex wavelet transform and Hidden Markov models

Xiao-Zhao Liu, Bin Fang, Zhaowei Shang
{"title":"Texture image segmentation using complex wavelet transform and Hidden Markov models","authors":"Xiao-Zhao Liu, Bin Fang, Zhaowei Shang","doi":"10.1109/ICWAPR.2009.5207410","DOIUrl":null,"url":null,"abstract":"Hidden Markov tree (HMT) is a tree-structure statistical model, which is used to capture the statistical structure information of smooth and singular regions. It works by modeling the relationship between the wavelet coefficients interscales. For the discrete wavelet transform (DWT) has its own drawbacks inherently, such as shift variance, lack of directionality, etc. The traditional HMT model based on DWT often leads to an unideal segmentation result. Because of the near shift-variance and good directional-selectivity of complex wavelet transforms, here the authors proposed a complex wavelet domain HMT model (C-HMT) to improve the accuracy of multiscale classification results. To get an accurate final segmentation, labeling tree model was used to fuse the interscale classification results. In the experiment, the classification and segmentation results of the proposed method are found to be better than the traditional wavelet-based models.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hidden Markov tree (HMT) is a tree-structure statistical model, which is used to capture the statistical structure information of smooth and singular regions. It works by modeling the relationship between the wavelet coefficients interscales. For the discrete wavelet transform (DWT) has its own drawbacks inherently, such as shift variance, lack of directionality, etc. The traditional HMT model based on DWT often leads to an unideal segmentation result. Because of the near shift-variance and good directional-selectivity of complex wavelet transforms, here the authors proposed a complex wavelet domain HMT model (C-HMT) to improve the accuracy of multiscale classification results. To get an accurate final segmentation, labeling tree model was used to fuse the interscale classification results. In the experiment, the classification and segmentation results of the proposed method are found to be better than the traditional wavelet-based models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复小波变换和隐马尔可夫模型的纹理图像分割
隐马尔可夫树(Hidden Markov tree, HMT)是一种树结构统计模型,用于捕获光滑和奇异区域的统计结构信息。它通过模拟小波系数在尺度间的关系来工作。由于离散小波变换(DWT)固有的缺点,如移位方差,缺乏方向性等。传统的基于DWT的HMT模型分割结果往往不理想。针对复小波变换的近移方差和良好的方向选择性,本文提出了一种复小波域HMT模型(C-HMT),以提高多尺度分类结果的精度。为了得到准确的最终分割结果,采用标记树模型对尺度间分类结果进行融合。实验结果表明,该方法的分类和分割效果优于传统的基于小波的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Laplacian Support Vector Machines Intelligent computerized fabric texture recognition system by using Grey-based neural fuzzy clustering A new cooperative algorithm for signal detection Improved algorithm of the Back Propagation neural network and its application in fault diagnosis of air-cooling condenser HSICT: A method for romoving highlight and shading in color image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1