A Materials Screening Methodology for Scaled Non-Volatile Memory in the AI Era

N. Lanzillo, R. Robison
{"title":"A Materials Screening Methodology for Scaled Non-Volatile Memory in the AI Era","authors":"N. Lanzillo, R. Robison","doi":"10.1109/ans47466.2019.8963744","DOIUrl":null,"url":null,"abstract":"We demonstrate a simulation workflow based on first-principles calculations to rapidly screen candidate materials for viability as ferromagnetic electrodes in magnetic tunnel junctions (MTJs) for the next generation of high-performance magnetic random access memory (MRAM) technology. For a series of Fe-based alloys with a fixed crystal structure, we calculate formation energies, bulk spin polarization, and essential magnetic properties including magnetic anisotropy energy (MAE) and tunneling magnetoresistance (TMR). This work demonstrates a materials optimization strategy that can guide on-wafer experiments","PeriodicalId":375888,"journal":{"name":"2019 IEEE Albany Nanotechnology Symposium (ANS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Albany Nanotechnology Symposium (ANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ans47466.2019.8963744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate a simulation workflow based on first-principles calculations to rapidly screen candidate materials for viability as ferromagnetic electrodes in magnetic tunnel junctions (MTJs) for the next generation of high-performance magnetic random access memory (MRAM) technology. For a series of Fe-based alloys with a fixed crystal structure, we calculate formation energies, bulk spin polarization, and essential magnetic properties including magnetic anisotropy energy (MAE) and tunneling magnetoresistance (TMR). This work demonstrates a materials optimization strategy that can guide on-wafer experiments
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI时代尺度非易失性存储器的材料筛选方法
我们展示了一个基于第一性原理计算的模拟工作流程,以快速筛选候选材料,以作为下一代高性能磁随机存取存储器(MRAM)技术的磁隧道结(MTJs)中的铁磁电极。对于一系列具有固定晶体结构的铁基合金,我们计算了形成能、体自旋极化和基本磁性能,包括磁各向异性能(MAE)和隧道磁电阻(TMR)。这项工作证明了一种可以指导晶圆上实验的材料优化策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material and process improvements towards sub 36nm pitch EUV single exposure A Materials Screening Methodology for Scaled Non-Volatile Memory in the AI Era Nanodevices Versus Bacteria in a Box: The Correspondence between Classical Electrodynamics and the Quantum Mechanics Path Integral Investigation of Quantification of Agglomeration Level of Silica Particles in CMP Slurry for Creating the Quality Prediction Formula by AI Technology Data-driven Approximate Edge Detection using Flow-based Computing on Memristor Crossbars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1