Adaptive Management of Energy Consumption Using Adaptive Runtime Models

A. Bergen, Nina Taherimakhsousi, H. Müller
{"title":"Adaptive Management of Energy Consumption Using Adaptive Runtime Models","authors":"A. Bergen, Nina Taherimakhsousi, H. Müller","doi":"10.1109/SEAMS.2015.20","DOIUrl":null,"url":null,"abstract":"A promising avenue to control energy-related costs in enterprise data centers is to investigate power-aware resource management strategies. In this study we investigate techniques to schedule resources adaptively with the sole aim of reducing power consumption. Our approach is based on a characterization of energy usage and resource utilization patterns obtained by monitoring energy consumption in an enterprise data center. We propose an adaptive feature extraction method to classify resource utilization patterns from energy consumption data. Improved classification results are obtained through signal feature extraction prior to the training stages for cascading classifiers for at least 14 different energy usage patterns. Adaptive feature extraction prior to classifier training improved class identification even further. The identified patterns can now be used as a basis for adaptive resource scheduling within a power-smart data center. The classification method that performed best is part of our proposed energy runtime model and controller which manages and controls the energy consumption in the data center according to usage patterns.","PeriodicalId":144594,"journal":{"name":"2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAMS.2015.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A promising avenue to control energy-related costs in enterprise data centers is to investigate power-aware resource management strategies. In this study we investigate techniques to schedule resources adaptively with the sole aim of reducing power consumption. Our approach is based on a characterization of energy usage and resource utilization patterns obtained by monitoring energy consumption in an enterprise data center. We propose an adaptive feature extraction method to classify resource utilization patterns from energy consumption data. Improved classification results are obtained through signal feature extraction prior to the training stages for cascading classifiers for at least 14 different energy usage patterns. Adaptive feature extraction prior to classifier training improved class identification even further. The identified patterns can now be used as a basis for adaptive resource scheduling within a power-smart data center. The classification method that performed best is part of our proposed energy runtime model and controller which manages and controls the energy consumption in the data center according to usage patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自适应运行时模型的能源消耗自适应管理
控制企业数据中心中能源相关成本的一个很有前景的途径是研究能源感知资源管理策略。在本研究中,我们探讨了以降低电力消耗为唯一目标的资源自适应调度技术。我们的方法基于通过监控企业数据中心的能源消耗而获得的能源使用和资源利用模式的特征。提出了一种自适应特征提取方法,从能耗数据中对资源利用模式进行分类。通过在级联分类器的训练阶段之前对至少14种不同的能源使用模式进行信号特征提取,获得了改进的分类结果。在分类器训练之前的自适应特征提取进一步改进了类识别。确定的模式现在可以用作电力智能数据中心内自适应资源调度的基础。性能最好的分类方法是我们提出的能源运行时模型和控制器的一部分,该模型和控制器根据使用模式管理和控制数据中心的能源消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimizing Nasty Surprises with Better Informed Decision-Making in Self-Adaptive Systems SASS: Self-Adaptation Using Stochastic Search AC-Contract: Run-Time Verification of Context-Aware Applications Mitigating Browser Fingerprint Tracking: Multi-level Reconfiguration and Diversification Modeling and Analyzing MAPE-K Feedback Loops for Self-Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1