Skin Segmentation Based on Human Face Illumination Feature

Pan Ng, Chi-Man Pun
{"title":"Skin Segmentation Based on Human Face Illumination Feature","authors":"Pan Ng, Chi-Man Pun","doi":"10.1109/WI-IAT.2012.71","DOIUrl":null,"url":null,"abstract":"A novel skin segmentation scheme based on human face illumination feature is proposed in this paper. First, we perform a face detection in order to measure the face position and amount on image, and then analyze each face's illumination feature. According these parameters, we classify the skin pixel and generate skin probability map, and finally fetch out a prefect skin mask for skin segmentation. Experimental results based on common dataset show that the proposed method can achieve 92.83% true positive rate (TPR) with 15.82% false positive rate (FPR), outperforming the traditional GMM skin segmentation method.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A novel skin segmentation scheme based on human face illumination feature is proposed in this paper. First, we perform a face detection in order to measure the face position and amount on image, and then analyze each face's illumination feature. According these parameters, we classify the skin pixel and generate skin probability map, and finally fetch out a prefect skin mask for skin segmentation. Experimental results based on common dataset show that the proposed method can achieve 92.83% true positive rate (TPR) with 15.82% false positive rate (FPR), outperforming the traditional GMM skin segmentation method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人脸光照特征的皮肤分割
提出了一种基于人脸光照特征的皮肤分割方法。首先进行人脸检测,测量人脸在图像上的位置和数量,然后分析每个人脸的光照特征。根据这些参数对皮肤像素进行分类,生成皮肤概率图,最后提取出完美的皮肤蒙版进行皮肤分割。基于通用数据集的实验结果表明,该方法的真阳性率(TPR)为92.83%,假阳性率(FPR)为15.82%,优于传统GMM皮肤分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conceptualization Effects on MEDLINE Documents Classification Using Rocchio Method Keyword Proximity Search over Large and Complex RDF Database Cognitive-Educational Constraints for Socially-Relevant MALL Technologies Mining Criminal Networks from Chat Log Inferring User Context from Spatio-Temporal Pattern Mining for Mobile Application Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1