Selecting Efficient Cluster Resources for Data Analytics: When and How to Allocate for In-Memory Processing?

Jonathan Will, L. Thamsen, Dominik Scheinert, O. Kao
{"title":"Selecting Efficient Cluster Resources for Data Analytics: When and How to Allocate for In-Memory Processing?","authors":"Jonathan Will, L. Thamsen, Dominik Scheinert, O. Kao","doi":"10.1145/3603719.3603733","DOIUrl":null,"url":null,"abstract":"Distributed dataflow systems such as Apache Spark or Apache Flink enable parallel, in-memory data processing on large clusters of commodity hardware. Consequently, the appropriate amount of memory to allocate to the cluster is a crucial consideration. In this paper, we analyze the challenge of efficient resource allocation for distributed data processing, focusing on memory. We emphasize that in-memory processing with in-memory data processing frameworks can undermine resource efficiency. Based on the findings of our trace data analysis, we compile requirements towards an automated solution for efficient cluster resource allocation.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3603733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed dataflow systems such as Apache Spark or Apache Flink enable parallel, in-memory data processing on large clusters of commodity hardware. Consequently, the appropriate amount of memory to allocate to the cluster is a crucial consideration. In this paper, we analyze the challenge of efficient resource allocation for distributed data processing, focusing on memory. We emphasize that in-memory processing with in-memory data processing frameworks can undermine resource efficiency. Based on the findings of our trace data analysis, we compile requirements towards an automated solution for efficient cluster resource allocation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为数据分析选择有效的集群资源:何时以及如何分配内存中的处理?
分布式数据流系统(如Apache Spark或Apache Flink)支持在大型商用硬件集群上并行处理内存中的数据。因此,分配给集群的适当内存量是一个至关重要的考虑因素。在本文中,我们分析了分布式数据处理中有效的资源分配所面临的挑战,重点是内存。我们强调使用内存数据处理框架的内存处理会破坏资源效率。根据跟踪数据分析的结果,我们为高效集群资源分配的自动化解决方案编译需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SciDG: Benchmarking Scientific Dynamic Graph Queries ST-CopulaGNN : A Multi-View Spatio-Temporal Graph Neural Network for Traffic Forecasting A Long-term Time Series Forecasting method with Multiple Decomposition Early ICU Mortality Prediction with Deep Federated Learning: A Real-World Scenario Privacy-Preserving Redaction of Diagnosis Data through Source Code Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1