Jonathan Will, L. Thamsen, Dominik Scheinert, O. Kao
{"title":"Selecting Efficient Cluster Resources for Data Analytics: When and How to Allocate for In-Memory Processing?","authors":"Jonathan Will, L. Thamsen, Dominik Scheinert, O. Kao","doi":"10.1145/3603719.3603733","DOIUrl":null,"url":null,"abstract":"Distributed dataflow systems such as Apache Spark or Apache Flink enable parallel, in-memory data processing on large clusters of commodity hardware. Consequently, the appropriate amount of memory to allocate to the cluster is a crucial consideration. In this paper, we analyze the challenge of efficient resource allocation for distributed data processing, focusing on memory. We emphasize that in-memory processing with in-memory data processing frameworks can undermine resource efficiency. Based on the findings of our trace data analysis, we compile requirements towards an automated solution for efficient cluster resource allocation.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3603733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed dataflow systems such as Apache Spark or Apache Flink enable parallel, in-memory data processing on large clusters of commodity hardware. Consequently, the appropriate amount of memory to allocate to the cluster is a crucial consideration. In this paper, we analyze the challenge of efficient resource allocation for distributed data processing, focusing on memory. We emphasize that in-memory processing with in-memory data processing frameworks can undermine resource efficiency. Based on the findings of our trace data analysis, we compile requirements towards an automated solution for efficient cluster resource allocation.