A10.13uJ/classification 2-channel Deep Neural Network-based SoC for Emotion Detection of Autistic Children

Abdul Rehman Aslam, Talha Iqbal, Mahnoor Aftab, Wala Saadeh, Muhammad Awais Bin Altaf
{"title":"A10.13uJ/classification 2-channel Deep Neural Network-based SoC for Emotion Detection of Autistic Children","authors":"Abdul Rehman Aslam, Talha Iqbal, Mahnoor Aftab, Wala Saadeh, Muhammad Awais Bin Altaf","doi":"10.1109/CICC48029.2020.9075952","DOIUrl":null,"url":null,"abstract":"An EEG-based noninvasive neuro-feedback SoC for emotion classification of Autistic children is presented. The AFE comprises two entirely shared EEG-channels using sampling capacitors to reduce the area by 30% and achieve an overall integrated input-referred noise of 0.55µ VRMS with cross-talk of - 79dB. The 4-layers Deep Neural Network (DNN) classifier is integrated on-sensor to classify (4 emotions) with >85% accuracy. The 16mm2 SoC in 0.18um CMOS consumes 10.13µJ/classification for 2 channels.","PeriodicalId":409525,"journal":{"name":"2020 IEEE Custom Integrated Circuits Conference (CICC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC48029.2020.9075952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

An EEG-based noninvasive neuro-feedback SoC for emotion classification of Autistic children is presented. The AFE comprises two entirely shared EEG-channels using sampling capacitors to reduce the area by 30% and achieve an overall integrated input-referred noise of 0.55µ VRMS with cross-talk of - 79dB. The 4-layers Deep Neural Network (DNN) classifier is integrated on-sensor to classify (4 emotions) with >85% accuracy. The 16mm2 SoC in 0.18um CMOS consumes 10.13µJ/classification for 2 channels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分类2通道深度神经网络的自闭症儿童情绪检测
提出一种基于脑电图的无创神经反馈SoC用于自闭症儿童情绪分类。AFE包括两个完全共享的脑电图通道,使用采样电容将面积减少30%,并实现0.55µVRMS的整体集成输入参考噪声和- 79dB的串扰。4层深度神经网络(DNN)分类器集成在传感器上,以>85%的准确率对(4种情绪)进行分类。0.18um CMOS的16mm2 SoC在2通道中消耗10.13µJ/分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design-Space Exploration of Quantum Approximate Optimization Algorithm under Noise A Low-Power Dual-Factor Authentication Unit for Secure Implantable Devices Compute-in-Memory with Emerging Nonvolatile-Memories: Challenges and Prospects A 9.3mV Load and 5.2mV Line transients Fast Response Buck Converter with Active Ramping Voltage Mode Control ESD Protection Design Overview in Advanced SOI and Bulk FinFET Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1