Libu Manjakkal, A. Pullanchiyodan, Ensieh S. Hosseini, R. Dahiya
{"title":"Flexible Supercapacitor with Sweat Equivalent Electrolyte for Safe and Ecofriendly Energy Storage","authors":"Libu Manjakkal, A. Pullanchiyodan, Ensieh S. Hosseini, R. Dahiya","doi":"10.1109/FLEPS49123.2020.9239523","DOIUrl":null,"url":null,"abstract":"Textile based wearable, biocompatible and low-cost energy storage devices are highly in demand to overcome the issue of powering wearable sensors and electronic devices. In this work, we designed an environmentally friendly textile supercapacitor (SC) which operates with sweat equivalent electrolyte. For investigating the influence of conductivity of the electrodes we present two types of SCs which are based on electrodes of: (1) pure PEDOT: PSS and (2) PEDOT: PSS with DMSO. The increasing conductivity of PEDOT: PSS with DMSO shows significant influence performance enhancement of the SC. The SC exhibited a capacitance of 10 mF.cm−2 for PEDOT: PSS with DMSO and 3.8 mF.cm−2 for PEDOT: PSS in sweat equivalent solution. For a real human sweat the SC exhibited a capacitance of 9 mF.cm-2, thus showing the capability for powering the low-power wearable sensors.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Textile based wearable, biocompatible and low-cost energy storage devices are highly in demand to overcome the issue of powering wearable sensors and electronic devices. In this work, we designed an environmentally friendly textile supercapacitor (SC) which operates with sweat equivalent electrolyte. For investigating the influence of conductivity of the electrodes we present two types of SCs which are based on electrodes of: (1) pure PEDOT: PSS and (2) PEDOT: PSS with DMSO. The increasing conductivity of PEDOT: PSS with DMSO shows significant influence performance enhancement of the SC. The SC exhibited a capacitance of 10 mF.cm−2 for PEDOT: PSS with DMSO and 3.8 mF.cm−2 for PEDOT: PSS in sweat equivalent solution. For a real human sweat the SC exhibited a capacitance of 9 mF.cm-2, thus showing the capability for powering the low-power wearable sensors.