Negation disambiguation using the maximum entropy model

Chunliang Zhang, Xiaoxu Fei, Jingbo Zhu
{"title":"Negation disambiguation using the maximum entropy model","authors":"Chunliang Zhang, Xiaoxu Fei, Jingbo Zhu","doi":"10.1109/NLPKE.2010.5587857","DOIUrl":null,"url":null,"abstract":"Handling negation issue is of great significance for sentiment analysis. Most previous studies adopted a simple heuristic rule for sentiment negation disambiguation within a fixed context window. In this paper we present a supervised method to disambiguate which sentiment word is attached to the negator such as “(not)” in an opinionated sentence. Experimental results show that our method can achieve better performance than traditional methods.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Handling negation issue is of great significance for sentiment analysis. Most previous studies adopted a simple heuristic rule for sentiment negation disambiguation within a fixed context window. In this paper we present a supervised method to disambiguate which sentiment word is attached to the negator such as “(not)” in an opinionated sentence. Experimental results show that our method can achieve better performance than traditional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最大熵模型的否定消歧
处理否定问题对情感分析具有重要意义。以往的研究大多采用简单的启发式规则,在固定的语境窗口内进行情绪否定消歧。本文提出了一种有监督的方法来判别在固执己见的句子中,哪个情感词附在否定词(如“(不)”)后面。实验结果表明,该方法比传统方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1