An Assigned Probability Technique to Derive Realistic Worst-Case Timing Models of Digital Standard cells

A. Fabbro, B. Franzini, L. Croce, C. Guardiani
{"title":"An Assigned Probability Technique to Derive Realistic Worst-Case Timing Models of Digital Standard cells","authors":"A. Fabbro, B. Franzini, L. Croce, C. Guardiani","doi":"10.1145/217474.217614","DOIUrl":null,"url":null,"abstract":"The possibility of determining the accurate worstcase timing performance of a library of standard cells is of great importance in a modern VLSI structured semicustom IC design flow. The margin for profitability is indeed extremely tight because of the ever increasing performance demand which can hardly be satisfied by a corresponding progress of the process technology. It is therefore of utmost importance to avoid excessively pessimistic estimates of the actual cell performance in order to exploit all the potential of the fabrication process. In this paper it is described a technique that allows to determine the worst-case points with an assigned probability value. It is thus possible to select the desired level of confidence for the worst-case evaluation of digital IC designs with good accuracy. The results of the Assigned Probability Technique (APT) are presented and compared with those obtained by standard methods both at cell and at circuit level showing the considerable benefits of the new method.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The possibility of determining the accurate worstcase timing performance of a library of standard cells is of great importance in a modern VLSI structured semicustom IC design flow. The margin for profitability is indeed extremely tight because of the ever increasing performance demand which can hardly be satisfied by a corresponding progress of the process technology. It is therefore of utmost importance to avoid excessively pessimistic estimates of the actual cell performance in order to exploit all the potential of the fabrication process. In this paper it is described a technique that allows to determine the worst-case points with an assigned probability value. It is thus possible to select the desired level of confidence for the worst-case evaluation of digital IC designs with good accuracy. The results of the Assigned Probability Technique (APT) are presented and compared with those obtained by standard methods both at cell and at circuit level showing the considerable benefits of the new method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种分配概率技术来推导数字标准单元的最坏情况时序模型
在现代VLSI结构化半定制集成电路设计流程中,确定标准单元库的精确最差情况定时性能的可能性非常重要。由于对性能的需求不断增加,而工艺技术的相应进步很难满足这种需求,因此盈利空间确实非常紧张。因此,为了开发制造过程的所有潜力,避免对实际电池性能过于悲观的估计是至关重要的。本文描述了一种利用给定概率值确定最坏情况点的技术。因此,可以为数字集成电路设计的最坏情况评估选择所需的置信水平,并具有良好的准确性。本文给出了分配概率技术(APT)的结果,并将其与标准方法在细胞和电路水平上得到的结果进行了比较,表明了新方法的巨大优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of Software Programs for Embedded Control Applications Logic Synthesis for Engineering Change On Optimal Board-Level Routing for FPGA-based Logic Emulation Boolean Matching for Incompletely Specified Functions Register Minimization beyond Sharing among Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1