Emotional reaction recognition from EEG

Kiret Dhindsa, S. Becker
{"title":"Emotional reaction recognition from EEG","authors":"Kiret Dhindsa, S. Becker","doi":"10.1109/PRNI.2017.7981501","DOIUrl":null,"url":null,"abstract":"In this study we explore the application of pattern recognition models for recognizing emotional reactions elicited by videos from electroencephalography (EEG). We show that both the presence and magnitude of each emotion can be predicted above chance levels with up to 88% accuracy. Furthermore, we show that there are differences in classifiability for different emotions and participants, but whether a participant’s data can be classified with respect to different emotions can itself be predicted from their EEG. Index Terms– Emotion recognition, electroenecephalography (EEG), pattern recognition, classification, regression, individual differences, affective computing applied.","PeriodicalId":429199,"journal":{"name":"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2017.7981501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this study we explore the application of pattern recognition models for recognizing emotional reactions elicited by videos from electroencephalography (EEG). We show that both the presence and magnitude of each emotion can be predicted above chance levels with up to 88% accuracy. Furthermore, we show that there are differences in classifiability for different emotions and participants, but whether a participant’s data can be classified with respect to different emotions can itself be predicted from their EEG. Index Terms– Emotion recognition, electroenecephalography (EEG), pattern recognition, classification, regression, individual differences, affective computing applied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的情绪反应识别
在这项研究中,我们探讨了模式识别模型在识别由脑电图(EEG)视频引发的情绪反应中的应用。我们表明,每种情绪的存在和程度都可以以高于概率水平的准确率达到88%。此外,我们表明不同情绪和参与者的可分类性存在差异,但参与者的数据是否可以根据不同的情绪进行分类本身可以从他们的脑电图中预测。索引术语-情绪识别,脑电图,模式识别,分类,回归,个体差异,情感计算应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial spreading of representational geometry through source estimation of magnetoencephalography signals Emotional reaction recognition from EEG Towards a faster randomized parcellation based inference Multi-output predictions from neuroimaging: assessing reduced-rank linear models Large brain effective network from EEG/MEG data and dMR information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1