Event analysis of pulse-reclosers in distribution systems through sparse representation

M. E. Raoufat, A. Taalimi, K. Tomsovic, R. Hay
{"title":"Event analysis of pulse-reclosers in distribution systems through sparse representation","authors":"M. E. Raoufat, A. Taalimi, K. Tomsovic, R. Hay","doi":"10.1109/ISAP.2017.8071406","DOIUrl":null,"url":null,"abstract":"The pulse-recloser uses pulse testing technology to verify that the line is clear of faults before initiating a reclose operation, which significantly reduces stress on the system components (e.g. substation transformers) and voltage sags on adjacent feeders. Online event analysis of pulse-reclosers are essential to increases the overall utility of the devices, especially when there are numerous devices installed throughout the distribution system. In this paper, field data recorded from several devices were analyzed to identify specific activity and fault locations. An algorithm is developed to screen the data to identify the status of each pole and to tag time windows with a possible pulse event. In the next step, selected time windows are further analyzed and classified using a sparse representation technique by solving an ℓ1-regularized least-square problem. This classification is obtained by comparing the pulse signature with the reference dictionary to find a set that most closely matches the pulse features. This work also sheds additional light on the possibility of fault classification based on the pulse signature. Field data collected from a distribution system are used to verify the effectiveness and reliability of the proposed method.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2017.8071406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The pulse-recloser uses pulse testing technology to verify that the line is clear of faults before initiating a reclose operation, which significantly reduces stress on the system components (e.g. substation transformers) and voltage sags on adjacent feeders. Online event analysis of pulse-reclosers are essential to increases the overall utility of the devices, especially when there are numerous devices installed throughout the distribution system. In this paper, field data recorded from several devices were analyzed to identify specific activity and fault locations. An algorithm is developed to screen the data to identify the status of each pole and to tag time windows with a possible pulse event. In the next step, selected time windows are further analyzed and classified using a sparse representation technique by solving an ℓ1-regularized least-square problem. This classification is obtained by comparing the pulse signature with the reference dictionary to find a set that most closely matches the pulse features. This work also sheds additional light on the possibility of fault classification based on the pulse signature. Field data collected from a distribution system are used to verify the effectiveness and reliability of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏表示的配电系统脉冲开关事件分析
脉冲合闸采用脉冲测试技术,在启动合闸操作之前验证线路没有故障,这大大减少了对系统组件(例如变电站变压器)的压力和相邻馈线上的电压跌落。在线事件分析对提高设备的整体效用至关重要,特别是当整个配电系统中安装了大量设备时。在本文中,从几个设备记录的现场数据进行了分析,以确定具体的活动和故障位置。开发了一种算法来筛选数据以识别每个极点的状态,并用可能的脉冲事件标记时间窗口。在接下来的步骤中,通过求解一个1-正则化最小二乘问题,使用稀疏表示技术进一步分析和分类所选择的时间窗。这种分类是通过将脉冲特征与参考字典进行比较,找到最接近脉冲特征的集合来获得的。这项工作还为基于脉冲特征的故障分类提供了更多的可能性。利用某配电系统的现场数据验证了该方法的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a multi-agent system for distributed voltage regulation Machine learning versus ray-tracing to forecast irradiance for an edge-computing SkyImager Modified teaching-learning based optimization algorithm and damping of inter-area oscillations through VSC-HVDC Intelligent system for automatic performance evaluation of distribution system operators Methodology for islanding operation of distributed synchronous generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1