Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms

Lee T.C., Kashyap R.L., Chu C.N.
{"title":"Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms","authors":"Lee T.C.,&nbsp;Kashyap R.L.,&nbsp;Chu C.N.","doi":"10.1006/cgip.1994.1042","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present an efficient three-dimensional (3-D) parallel thinning algorithm for extracting both the medial surfaces and the medial axes of a 3-D object (given as a 3-D binary image). A new Euler table is derived to ensure the invariance of the Euler characteristic of the object, during thinning. An octree data structure of 3 × 3 × 3 lattice points is built to examine the local connectivity. The sets of \"simple\" points found by different researchers are compared with the constructed set. Different definitions of \"surface\" points including ours are given. By preserving the topological and the geometrical conditions, our algorithm produces desirable skeletons and performs better than others in terms of noise sensitivity and speed. Pre- and postprocessors can be used to remove additional noise spurs. Its use in defect analysis of objects produced by casting and forging is discussed.</p></div>","PeriodicalId":100349,"journal":{"name":"CVGIP: Graphical Models and Image Processing","volume":"56 6","pages":"Pages 462-478"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/cgip.1994.1042","citationCount":"1376","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104996528471042X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1376

Abstract

In this paper, we present an efficient three-dimensional (3-D) parallel thinning algorithm for extracting both the medial surfaces and the medial axes of a 3-D object (given as a 3-D binary image). A new Euler table is derived to ensure the invariance of the Euler characteristic of the object, during thinning. An octree data structure of 3 × 3 × 3 lattice points is built to examine the local connectivity. The sets of "simple" points found by different researchers are compared with the constructed set. Different definitions of "surface" points including ours are given. By preserving the topological and the geometrical conditions, our algorithm produces desirable skeletons and performs better than others in terms of noise sensitivity and speed. Pre- and postprocessors can be used to remove additional noise spurs. Its use in defect analysis of objects produced by casting and forging is discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过三维内表面轴细化算法构建骨架模型
在本文中,我们提出了一种有效的三维(3-D)并行细化算法,用于提取3-D对象(以3-D二值图像的形式给出)的中间表面和中间轴。导出了一个新的欧拉表,以确保在细化过程中对象欧拉特性的不变性。建立了一个3 × 3 × 3格点的八叉树数据结构来检验局部连通性。将不同研究者发现的“简单”点集与构造集进行比较。给出了不同的“表面”点的定义,包括我们的定义。通过保留拓扑和几何条件,我们的算法产生了理想的骨架,并且在噪声灵敏度和速度方面比其他算法表现得更好。预处理器和后处理器可以用来去除额外的噪声杂散。讨论了其在铸锻件缺陷分析中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Dynamic Approach for Finding the Contour of Bi-Level Images Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms Estimation of Edge Parameters and Image Blur Using Polynomial Transforms Binarization and Multithresholding of Document Images Using Connectivity Novel Deconvolution of Noisy Gaussian Filters with a Modified Hermite Expansion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1