Data Criticality in Network-On-Chip Design

Joshua San Miguel, Natalie D. Enright Jerger
{"title":"Data Criticality in Network-On-Chip Design","authors":"Joshua San Miguel, Natalie D. Enright Jerger","doi":"10.1145/2786572.2786593","DOIUrl":null,"url":null,"abstract":"Many network-on-chip (NoC) designs focus on maximizing performance, delivering data to each core no later than needed by the application. Yet to achieve greater energy efficiency, we argue that it is just as important that data is delivered no earlier than needed. To address this, we explore data criticality in CMPs. Caches fetch data in bulk (blocks of multiple words). Depending on the application's memory access patterns, some words are needed right away (critical) while other data are fetched too soon (non-critical). On a wide range of applications, we perform a limit study of the impact of data criticality in NoC design. Criticality-oblivious designs can waste up to 37.5% energy, compared to an idealized NoC that fetches each word both no later and no earlier than needed. Furthermore, 62.3% of energy is wasted fetching data that is not used by the application. We present NoCNoC, a practical, criticality-aware NoC design that achieves up to 60.5% energy savings with no loss in performance. Our work moves towards an ideally-efficient NoC, delivering data both no later and no earlier than needed.","PeriodicalId":228605,"journal":{"name":"Proceedings of the 9th International Symposium on Networks-on-Chip","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786572.2786593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Many network-on-chip (NoC) designs focus on maximizing performance, delivering data to each core no later than needed by the application. Yet to achieve greater energy efficiency, we argue that it is just as important that data is delivered no earlier than needed. To address this, we explore data criticality in CMPs. Caches fetch data in bulk (blocks of multiple words). Depending on the application's memory access patterns, some words are needed right away (critical) while other data are fetched too soon (non-critical). On a wide range of applications, we perform a limit study of the impact of data criticality in NoC design. Criticality-oblivious designs can waste up to 37.5% energy, compared to an idealized NoC that fetches each word both no later and no earlier than needed. Furthermore, 62.3% of energy is wasted fetching data that is not used by the application. We present NoCNoC, a practical, criticality-aware NoC design that achieves up to 60.5% energy savings with no loss in performance. Our work moves towards an ideally-efficient NoC, delivering data both no later and no earlier than needed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
片上网络设计中的数据临界性
许多片上网络(NoC)设计的重点是最大限度地提高性能,在不晚于应用程序所需的时间向每个核心传输数据。然而,为了实现更高的能源效率,我们认为数据不早于所需的时间交付同样重要。为了解决这个问题,我们探讨了cmp中的数据临界性。高速缓存批量获取数据(多个单词的块)。根据应用程序的内存访问模式,有些字是立即需要的(关键),而其他数据则是很快获取的(非关键)。在广泛的应用中,我们对NoC设计中数据临界性的影响进行了限制研究。与不晚于或不早于需要获取每个单词的理想NoC相比,临界无关设计可能浪费高达37.5%的能源。此外,62.3%的能量被浪费在获取应用程序不使用的数据上。我们提出NoCNoC,一种实用的,临界感知的NoC设计,在不损失性能的情况下实现高达60.5%的节能。我们的工作朝着理想高效的NoC方向发展,既不晚也不早地提供数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wear-Aware Adaptive Routing for Networks-on-Chips On-Chip Millimeter Wave Antennas and Transceivers On-Chip Decentralized Routers with Balanced Pipelines for Avoiding Interconnect Bottleneck Highly Fault-tolerant NoC Routing with Application-aware Congestion Management A Low-Overhead, Fully-Distributed, Guaranteed-Delivery Routing Algorithm for Faulty Network-on-Chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1