{"title":"ProLanGO2","authors":"Kyle Hippe, Sola Gbenro, Renzhi Cao","doi":"10.1145/3388440.3414701","DOIUrl":null,"url":null,"abstract":"Predicting protein function from protein sequence is a main challenge in the computational biology field. Traditional methods that search protein sequences against existing databases may not work well in practice, particularly when little or no homology exists in the database. We introduce the ProLanGO2 method which utilizes the natural language processing and machine learning techniques to tackle the protein function prediction problem with protein sequence as input. Our method has been benchmarked blindly in the latest Critical Assessment of protein Function Annotation algorithms (CAFA 4) experiment. There are a few changes compared to the old version of ProLanGO. First of all, the latest version of the UniProt database is used. Second, the Uniprot database is filtered by the newly created fragment sequence database FSD to prepare for the protein sequence language. Third, the Encoder-Decoder network, a model consisting of two RNNs (encoder and decoder), is used to train models on the dataset. Fourth, if no k-mers of a protein sequence exist in the FSD, we select the top ten GO terms with the highest probability in all sequences from the Uniprot database that didn't contain any k-mers in FSD, and use those ten GO terms as back up for the prediction of new protein sequence. Finally, we selected the 100 best performing models and explored all combinations of those models to select the best performance ensemble model. We benchmark those different combinations of models on CAFA 3 dataset and select three top performance ensemble models for prediction in the latest CAFA 4 experiment as CaoLab. We have also evaluated the performance of our ProLanGO2 method on 253 unseen sequences taken from the UniProt database and compared with several other protein function prediction methods, the results show that our method achieves great performance among sequence-based protein function prediction methods. Our method is available in GitHub: https://github.com/caorenzhi/ProLanGO2.git.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3414701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Predicting protein function from protein sequence is a main challenge in the computational biology field. Traditional methods that search protein sequences against existing databases may not work well in practice, particularly when little or no homology exists in the database. We introduce the ProLanGO2 method which utilizes the natural language processing and machine learning techniques to tackle the protein function prediction problem with protein sequence as input. Our method has been benchmarked blindly in the latest Critical Assessment of protein Function Annotation algorithms (CAFA 4) experiment. There are a few changes compared to the old version of ProLanGO. First of all, the latest version of the UniProt database is used. Second, the Uniprot database is filtered by the newly created fragment sequence database FSD to prepare for the protein sequence language. Third, the Encoder-Decoder network, a model consisting of two RNNs (encoder and decoder), is used to train models on the dataset. Fourth, if no k-mers of a protein sequence exist in the FSD, we select the top ten GO terms with the highest probability in all sequences from the Uniprot database that didn't contain any k-mers in FSD, and use those ten GO terms as back up for the prediction of new protein sequence. Finally, we selected the 100 best performing models and explored all combinations of those models to select the best performance ensemble model. We benchmark those different combinations of models on CAFA 3 dataset and select three top performance ensemble models for prediction in the latest CAFA 4 experiment as CaoLab. We have also evaluated the performance of our ProLanGO2 method on 253 unseen sequences taken from the UniProt database and compared with several other protein function prediction methods, the results show that our method achieves great performance among sequence-based protein function prediction methods. Our method is available in GitHub: https://github.com/caorenzhi/ProLanGO2.git.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RA2Vec CanMod From Interatomic Distances to Protein Tertiary Structures with a Deep Convolutional Neural Network Prediction of Large for Gestational Age Infants in Overweight and Obese Women at Approximately 20 Gestational Weeks Using Patient Information for the Prediction of Caregiver Burden in Amyotrophic Lateral Sclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1