Application of RBF Neural Network PID Controller in the Rectification Column Temperature Control System

Y. Zhang, Chao-ying Liu, Xue-ling Song, Zhifei Yan
{"title":"Application of RBF Neural Network PID Controller in the Rectification Column Temperature Control System","authors":"Y. Zhang, Chao-ying Liu, Xue-ling Song, Zhifei Yan","doi":"10.1109/ISCID.2013.132","DOIUrl":null,"url":null,"abstract":"The temperature control of the rectification column is an important part of distillation process control system. For the time-delay and parameter time-varying characteristics in rectification column temperature control system, it puts forward neural network self-tuning PID controller method which combines the advantages of traditional PID control and neural network radial basis function (RBF). From the simulation experiment results it shows that RBF neural network PID controller gets much better control effect, and it verifies the effectiveness of the proposed method.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The temperature control of the rectification column is an important part of distillation process control system. For the time-delay and parameter time-varying characteristics in rectification column temperature control system, it puts forward neural network self-tuning PID controller method which combines the advantages of traditional PID control and neural network radial basis function (RBF). From the simulation experiment results it shows that RBF neural network PID controller gets much better control effect, and it verifies the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RBF神经网络PID控制器在精馏塔温度控制系统中的应用
精馏塔温度控制是精馏过程控制系统的重要组成部分。针对精馏塔温度控制系统的时滞和参数时变特性,结合传统PID控制和神经网络径向基函数(RBF)的优点,提出了神经网络自整定PID控制器方法。仿真实验结果表明,RBF神经网络PID控制器取得了较好的控制效果,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Swarm Optimization-Least Squares Support Vector Regression with Multi-scale Wavelet Kernel Application of BP Neural Networks to Testing the Reasonableness of Flood Season Staging Balancing an Inverted Pendulum with an EEG-Based BCI Multi-feature Visual Tracking Using Adaptive Unscented Kalman Filtering Design of a Novel Portable ECG Monitor for Heart Health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1