An Evaluation of Deep Spectral Mappings and WaveNet Vocoder for Voice Conversion

Patrick Lumban Tobing, Tomoki Hayashi, Yi-Chiao Wu, Kazuhiro Kobayashi, T. Toda
{"title":"An Evaluation of Deep Spectral Mappings and WaveNet Vocoder for Voice Conversion","authors":"Patrick Lumban Tobing, Tomoki Hayashi, Yi-Chiao Wu, Kazuhiro Kobayashi, T. Toda","doi":"10.1109/SLT.2018.8639608","DOIUrl":null,"url":null,"abstract":"This paper presents an evaluation of deep spectral mapping and WaveNet vocoder in voice conversion (VC). In our VC framework, spectral features of an input speaker are converted into those of a target speaker using the deep spectral mapping, and then together with the excitation features, the converted waveform is generated using WaveNet vocoder. In this work, we compare three different deep spectral mapping networks, i.e., a deep single density network (DSDN), a deep mixture density network (DMDN), and a long short-term memory recurrent neural network with an autoregressive output layer (LSTM-AR). Moreover, we also investigate several methods for reducing mismatches of spectral features used in WaveNet vocoder between training and conversion processes, such as some methods to alleviate oversmoothing effects of the converted spectral features, and another method to refine WaveNet using the converted spectral features. The experimental results demonstrate that the LSTM-AR yields nearly better spectral mapping accuracy than the others, and the proposed WaveNet refinement method significantly improves the naturalness of the converted waveform.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents an evaluation of deep spectral mapping and WaveNet vocoder in voice conversion (VC). In our VC framework, spectral features of an input speaker are converted into those of a target speaker using the deep spectral mapping, and then together with the excitation features, the converted waveform is generated using WaveNet vocoder. In this work, we compare three different deep spectral mapping networks, i.e., a deep single density network (DSDN), a deep mixture density network (DMDN), and a long short-term memory recurrent neural network with an autoregressive output layer (LSTM-AR). Moreover, we also investigate several methods for reducing mismatches of spectral features used in WaveNet vocoder between training and conversion processes, such as some methods to alleviate oversmoothing effects of the converted spectral features, and another method to refine WaveNet using the converted spectral features. The experimental results demonstrate that the LSTM-AR yields nearly better spectral mapping accuracy than the others, and the proposed WaveNet refinement method significantly improves the naturalness of the converted waveform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音转换中深度光谱映射和波网声码器的评价
本文对深度频谱映射和WaveNet声码器在语音转换中的应用进行了评价。在我们的VC框架中,使用深度频谱映射将输入扬声器的频谱特征转换为目标扬声器的频谱特征,然后使用WaveNet声码器与激励特征一起生成转换波形。在这项工作中,我们比较了三种不同的深度光谱映射网络,即深度单密度网络(DSDN),深度混合密度网络(DMDN)和具有自回归输出层的长短期记忆递归神经网络(LSTM-AR)。此外,我们还研究了几种减少WaveNet声码器在训练和转换过程中使用的频谱特征不匹配的方法,例如减轻转换后的频谱特征的过平滑效应的方法,以及利用转换后的频谱特征对WaveNet进行细化的方法。实验结果表明,LSTM-AR的光谱映射精度几乎高于其他方法,并且所提出的WaveNet细化方法显著提高了转换波形的自然度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sequence Teacher-Student Training of Acoustic Models for Automatic Free Speaking Language Assessment Leveraging Sequence-to-Sequence Speech Synthesis for Enhancing Acoustic-to-Word Speech Recognition Dynamic Extension of ASR Lexicon Using Wikipedia Data Detection and Calibration of Whisper for Speaker Recognition Out-of-Domain Slot Value Detection for Spoken Dialogue Systems with Context Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1