PPP: Prefix-Based Popularity Prediction for Efficient Content Caching in Contentcentric Networks

Jianji Ren, Shanyu Zhao, Junding Sun, Ding Li, Song Wang, Zong-pu Jia
{"title":"PPP: Prefix-Based Popularity Prediction for Efficient Content Caching in Contentcentric Networks","authors":"Jianji Ren, Shanyu Zhao, Junding Sun, Ding Li, Song Wang, Zong-pu Jia","doi":"10.32604/csse.2018.33.259","DOIUrl":null,"url":null,"abstract":"In the Content-Centric Networking (CCN) architecture, popular content can be cached in some intermediate network devices while being delivered, and the following requests for the cached content can be efficiently handled by the caches. Thus, how to design in-network caching is important for reducing both the traffic load and the delivery delay. In this paper, we propose a caching framework of Prefix-based Popularity Prediction (PPP) for efficient caching in CCN. PPP assigns a lifetime (in a cache) to the prefix of a name (of each cached object) based on its access history (or popularity), which is represented as a Prefix-Tree (PT). We demonstrate PPP’s predictability of content popularity in CCN by both traces and simulations. The evaluation results show that PPP can achieve higher cache hits and less traffic load than traditional caching algorithms (i.e., LRU and LFU). Also, its performance gain increases with users of high mobility","PeriodicalId":119237,"journal":{"name":"Commun. Stat. Simul. Comput.","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Stat. Simul. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/csse.2018.33.259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the Content-Centric Networking (CCN) architecture, popular content can be cached in some intermediate network devices while being delivered, and the following requests for the cached content can be efficiently handled by the caches. Thus, how to design in-network caching is important for reducing both the traffic load and the delivery delay. In this paper, we propose a caching framework of Prefix-based Popularity Prediction (PPP) for efficient caching in CCN. PPP assigns a lifetime (in a cache) to the prefix of a name (of each cached object) based on its access history (or popularity), which is represented as a Prefix-Tree (PT). We demonstrate PPP’s predictability of content popularity in CCN by both traces and simulations. The evaluation results show that PPP can achieve higher cache hits and less traffic load than traditional caching algorithms (i.e., LRU and LFU). Also, its performance gain increases with users of high mobility
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PPP:内容中心网络中高效内容缓存的基于前缀的流行度预测
在以内容为中心的网络(CCN)体系结构中,流行的内容可以在交付时缓存到一些中间网络设备中,并且缓存可以有效地处理对缓存内容的以下请求。因此,如何设计网络内缓存对于减少流量负载和传输延迟非常重要。本文提出了一种基于前缀的流行度预测(PPP)缓存框架,用于CCN的高效缓存。PPP根据访问历史(或流行度)为(每个缓存对象的)名称的前缀分配一个生命周期(在缓存中),这表示为前缀树(PT)。我们通过跟踪和模拟证明了PPP对CCN中内容流行度的可预测性。评估结果表明,与传统的缓存算法(即LRU和LFU)相比,PPP可以实现更高的缓存命中率和更小的流量负载。此外,它的性能增益随着高移动性用户的增加而增加
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MCMC4Extremes: an R package for Bayesian inference for extremes and its extensions A Description Method for Formalizing Domain-Specific Modelling Language Reliable Approximated Number System with Exact Bounds and Three-Valued Logic The Definition and Numerical Method of Final Value Problem and Arbitrary Value Problem Robust quadratic discriminant analysis using Sn covariance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1