Comparison of image enhancement techniques and CNN models for COVID-19 classification using chest x-rays images

Isoon Kanjanasurat, Nontacha Domepananakorn, T. Archevapanich, B. Purahong
{"title":"Comparison of image enhancement techniques and CNN models for COVID-19 classification using chest x-rays images","authors":"Isoon Kanjanasurat, Nontacha Domepananakorn, T. Archevapanich, B. Purahong","doi":"10.1109/iceast55249.2022.9826319","DOIUrl":null,"url":null,"abstract":"This paper compares two image enhancement techniques with five convolutional neural network (CNN) models to classify Covid-19 chest x-ray images. a contrast limited adaptive histogram (CLAHE) and gamma correction which is method to improve image histogram are compared with the original chest x-ray image. We use five publicly available pre-trained CNN models to detect COVID-19: MobileNet, MobileNetV2, DenseNet169, DenseNet201, and ResNet50V2. Our procedure was validated using the COVID-19 radiography database, which is a freely accessible resource. MoblileNet with gamma correction is well-suited for COVIC-19 classification, achieving an accuracy score of 87.53 percent on the first epoch and 95.46 percent after training 100 epochs with the shortest computation time.","PeriodicalId":441430,"journal":{"name":"2022 8th International Conference on Engineering, Applied Sciences, and Technology (ICEAST)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Engineering, Applied Sciences, and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iceast55249.2022.9826319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper compares two image enhancement techniques with five convolutional neural network (CNN) models to classify Covid-19 chest x-ray images. a contrast limited adaptive histogram (CLAHE) and gamma correction which is method to improve image histogram are compared with the original chest x-ray image. We use five publicly available pre-trained CNN models to detect COVID-19: MobileNet, MobileNetV2, DenseNet169, DenseNet201, and ResNet50V2. Our procedure was validated using the COVID-19 radiography database, which is a freely accessible resource. MoblileNet with gamma correction is well-suited for COVIC-19 classification, achieving an accuracy score of 87.53 percent on the first epoch and 95.46 percent after training 100 epochs with the shortest computation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胸部x线图像图像增强技术与CNN模型对COVID-19分类的比较
本文比较了两种图像增强技术与五种卷积神经网络(CNN)模型对Covid-19胸部x线图像的分类。对比了对比度限制自适应直方图(CLAHE)和改进图像直方图的伽玛校正方法。我们使用五种公开可用的预训练CNN模型来检测COVID-19: MobileNet, MobileNetV2, DenseNet169, DenseNet201和ResNet50V2。我们的程序使用COVID-19放射照相数据库进行验证,该数据库是免费获取的资源。具有伽马校正的mobilenet非常适合covid -19分类,在第一个epoch的准确率达到87.53%,在训练100个epoch后的准确率达到95.46%,计算时间最短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Wireless Body Area Network Localization Based on Measurement Data The Misconception of Relational Database and the ACID Properties The Bandwidth Verification of on-site UHF Sensor for Partial Discharge Measurement Online PD Measurement by Detecting the Pulsed Compensating Current in High Voltage Equipment Measuring System for Parameter Evaluation of Full Lightning Impulse Voltage Waveform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1