Shouqiang Kang, Jiawei Yang, Yulin Sun, Yujing Wang, Qingyan Wang, V. I. Mikulovich
{"title":"Fault Diagnosis Method of Rolling Bearings Under Different Working Conditions Based on Federated Feature Transfer Learning","authors":"Shouqiang Kang, Jiawei Yang, Yulin Sun, Yujing Wang, Qingyan Wang, V. I. Mikulovich","doi":"10.1109/ICSMD57530.2022.10058221","DOIUrl":null,"url":null,"abstract":"A rolling bearing fault diagnosis method based on the federated feature transfer learning is proposed for the low accuracy of the diagnosis model in the presence of large differences in data distribution under different working conditions, difficulty in obtaining labeled data and non-sharing of data among different users. This method performs wavelet transformation on the time domain vibration data of rolling bearings to obtain a time-frequency diagram. The priori labeled public data and the multi-user island private data are regarded as the source domain and the target domain. The multi-representation feature extraction structure is introduced to improve the original residual network. Based on an improved residual network and multi-representation features in the source domain and the target domain, every local model and a federated global model are constructed. Through verification of bearing data, the proposed method can establish an effective fault diagnosis model with high fault diagnosis accuracy. It can integrate the knowledge of isolated island data without sharing data among multiple users.","PeriodicalId":396735,"journal":{"name":"2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMD57530.2022.10058221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A rolling bearing fault diagnosis method based on the federated feature transfer learning is proposed for the low accuracy of the diagnosis model in the presence of large differences in data distribution under different working conditions, difficulty in obtaining labeled data and non-sharing of data among different users. This method performs wavelet transformation on the time domain vibration data of rolling bearings to obtain a time-frequency diagram. The priori labeled public data and the multi-user island private data are regarded as the source domain and the target domain. The multi-representation feature extraction structure is introduced to improve the original residual network. Based on an improved residual network and multi-representation features in the source domain and the target domain, every local model and a federated global model are constructed. Through verification of bearing data, the proposed method can establish an effective fault diagnosis model with high fault diagnosis accuracy. It can integrate the knowledge of isolated island data without sharing data among multiple users.