A Data-Driven Digital Twin for Urban Activity Monitoring

Matteo Mendula, Armir Bujari, L. Foschini, P. Bellavista
{"title":"A Data-Driven Digital Twin for Urban Activity Monitoring","authors":"Matteo Mendula, Armir Bujari, L. Foschini, P. Bellavista","doi":"10.1109/ISCC55528.2022.9912914","DOIUrl":null,"url":null,"abstract":"The increasing pace of sensing and communication technology rollout is paving the way for concrete deployments of smart city applications, enabling a data-driven modeling of processes and the environment. In particular, the Urban Facility Management (UFM) process is growing in importance, recognized to have a direct impact on the sustainability and the development of our cities. In [1] we presented a system's view of a Digital Twin solution for the UFM process. The solution relies on (near)real-time data to quantify the activity index in an area of interest, used as a basis for planning decisions. In this study, we focus on the predictive subsystem, tasked with computing near-to-mid term predictions of the activity index, equipping UFM operators with a flexible decision-support system. Without loss of generality, we present an analysis of the vehicular traffic component, part of the activity index, assessing the accuracy of different predictive schemes, discussing some operational implications.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The increasing pace of sensing and communication technology rollout is paving the way for concrete deployments of smart city applications, enabling a data-driven modeling of processes and the environment. In particular, the Urban Facility Management (UFM) process is growing in importance, recognized to have a direct impact on the sustainability and the development of our cities. In [1] we presented a system's view of a Digital Twin solution for the UFM process. The solution relies on (near)real-time data to quantify the activity index in an area of interest, used as a basis for planning decisions. In this study, we focus on the predictive subsystem, tasked with computing near-to-mid term predictions of the activity index, equipping UFM operators with a flexible decision-support system. Without loss of generality, we present an analysis of the vehicular traffic component, part of the activity index, assessing the accuracy of different predictive schemes, discussing some operational implications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的城市活动监测数字孪生
传感和通信技术推出的步伐越来越快,为智慧城市应用的具体部署铺平了道路,使数据驱动的流程和环境建模成为可能。特别是,城市设施管理(UFM)进程日益重要,被认为对我们城市的可持续性和发展具有直接影响。在b[1]中,我们提出了UFM过程的数字孪生解决方案的系统视图。该解决方案依赖于(近)实时数据来量化感兴趣领域的活动指数,作为规划决策的基础。在本研究中,我们将重点放在预测子系统上,该子系统的任务是计算活动指数的近中期预测,为UFM运营商提供灵活的决策支持系统。在不丧失一般性的情况下,我们分析了车辆交通成分,活动指数的一部分,评估了不同预测方案的准确性,讨论了一些操作影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence-Time Analysis for the HTE Link Quality Estimator OCVC: An Overlapping-Enabled Cooperative Computing Protocol in Vehicular Fog Computing Non-Contact Heart Rate Signal Extraction and Identification Based on Speckle Image Active Eavesdroppers Detection System in Multi-hop Wireless Sensor Networks A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1