Neural Network Based Identification of Fuel Injection Rate Profiles for Diesel Engines

E. Immonen, M. Laurén, L. Roininen, S. Särkkä
{"title":"Neural Network Based Identification of Fuel Injection Rate Profiles for Diesel Engines","authors":"E. Immonen, M. Laurén, L. Roininen, S. Särkkä","doi":"10.1109/ICITM48982.2020.9080367","DOIUrl":null,"url":null,"abstract":"The rate profile at which fuel is injected into an inter-nal combustion (IC) diesel engine is among the most important parameters affecting the engine performance and exhaust emissions. However, it is notoriously difficult to measure on-line in practice. This article studies the application of neural network based methods for identification of the diesel fuel in-jection rate profile from in-cylinder pressure data, for which measurements are easy to obtain online from a running en-gine. The proposed approach provides a prediction of the injection rate profile as a function of the crank angle, and an estimate of the uncertainty associated with the prediction. Among others, the results presented herein may be benefi-cial for real-time injector fault detection and also for devising novel optimal control strategies for minimizing exhaust emissions of diesel engines.","PeriodicalId":176979,"journal":{"name":"2020 9th International Conference on Industrial Technology and Management (ICITM)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Conference on Industrial Technology and Management (ICITM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITM48982.2020.9080367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rate profile at which fuel is injected into an inter-nal combustion (IC) diesel engine is among the most important parameters affecting the engine performance and exhaust emissions. However, it is notoriously difficult to measure on-line in practice. This article studies the application of neural network based methods for identification of the diesel fuel in-jection rate profile from in-cylinder pressure data, for which measurements are easy to obtain online from a running en-gine. The proposed approach provides a prediction of the injection rate profile as a function of the crank angle, and an estimate of the uncertainty associated with the prediction. Among others, the results presented herein may be benefi-cial for real-time injector fault detection and also for devising novel optimal control strategies for minimizing exhaust emissions of diesel engines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的柴油机喷油速率曲线识别
燃油注入内燃机(IC)的速率分布是影响发动机性能和废气排放的最重要参数之一。然而,在实践中,在线测量是出了名的困难。本文研究了基于神经网络的方法在柴油机缸内压力数据识别中的应用。缸内压力数据易于在线获取。所提出的方法提供了注射速率曲线作为曲柄角函数的预测,并估计了与预测相关的不确定性。除此之外,本文的研究结果可能有助于实时检测喷油器故障,也有助于设计新的最优控制策略,以最大限度地减少柴油机的废气排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Overview of Lean Production and Industry 4.0 in Different Context Digitization Model for Reducing Costs and Operating Times in Peruvian Banks Dynamic Programming Model for Cellular Manufacturing Layout under Demand Uncertainty A Study of Production Planning Based on the Linear Programming Method 2020 9th International Conference on Industrial Technology and Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1