Runtime Anomaly Detection Method in Smart Factories using Machine Learning on RDF Event Streams: Grand Challenge

Joong-Hyun Choi, Kang-Woo Lee, Hyungkun Jung, Eun-Sun Cho
{"title":"Runtime Anomaly Detection Method in Smart Factories using Machine Learning on RDF Event Streams: Grand Challenge","authors":"Joong-Hyun Choi, Kang-Woo Lee, Hyungkun Jung, Eun-Sun Cho","doi":"10.1145/3093742.3095104","DOIUrl":null,"url":null,"abstract":"This year's ACM DEBS Grand Challenge problem is about anomaly detection of manufacturing equipments based on machine learning techniques, which is fairy challenging. This requires semi-realtime handling of RDF data values continuously collected in streams, measured from analog sensors attached to multiple machines. This paper shows our experience in implementing solutions of the problems in this domain. It includes our elaboration on high degree of concurrency in continuous query processing, to make better use of distributed environments provided by docker containers.","PeriodicalId":325666,"journal":{"name":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093742.3095104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This year's ACM DEBS Grand Challenge problem is about anomaly detection of manufacturing equipments based on machine learning techniques, which is fairy challenging. This requires semi-realtime handling of RDF data values continuously collected in streams, measured from analog sensors attached to multiple machines. This paper shows our experience in implementing solutions of the problems in this domain. It includes our elaboration on high degree of concurrency in continuous query processing, to make better use of distributed environments provided by docker containers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RDF事件流的机器学习智能工厂运行时异常检测方法:重大挑战
今年的ACM DEBS大挑战问题是关于基于机器学习技术的制造设备异常检测,这是一个非常具有挑战性的问题。这需要半实时地处理流中连续收集的RDF数据值,这些数据值由连接到多台机器的模拟传感器测量。本文展示了我们在实现该领域问题解决方案方面的经验。它包括我们对连续查询处理中的高度并发性的阐述,以便更好地利用docker容器提供的分布式环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multilateral Context Analysis based on the Novel Visualization of Network Tomography: Poster An Embedded DSL Framework for Distributed Embedded Systems: Doctoral Symposium FlinkMan: Anomaly Detection in Manufacturing Equipment with Apache Flink: Grand Challenge Using Rank Aggregation in Continuously Answering SPARQL Queries on Streaming and Quasi-static Linked Data FlowDB: Integrating Stream Processing and Consistent State Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1