Exploration strategies in developmental robotics: A unified probabilistic framework

Clément Moulin-Frier, Pierre-Yves Oudeyer
{"title":"Exploration strategies in developmental robotics: A unified probabilistic framework","authors":"Clément Moulin-Frier, Pierre-Yves Oudeyer","doi":"10.1109/DEVLRN.2013.6652535","DOIUrl":null,"url":null,"abstract":"We present a probabilistic framework unifying two important families of exploration mechanisms recently shown to be efficient to learn complex non-linear redundant sensorimotor mappings. These two explorations mechanisms are: 1) goal babbling, 2) active learning driven by the maximization of empirically measured learning progress. We show how this generic framework allows to model several recent algorithmic architectures for exploration. Then, we propose a particular implementation using Gaussian Mixture Models, which at the same time provides an original empirical measure of the competence progress. Finally, we perform computer simulations on two simulated setups: the control of the end effector of a 7-DoF arm and the control of the formants produced by an articulatory synthesizer.","PeriodicalId":106997,"journal":{"name":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2013.6652535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

We present a probabilistic framework unifying two important families of exploration mechanisms recently shown to be efficient to learn complex non-linear redundant sensorimotor mappings. These two explorations mechanisms are: 1) goal babbling, 2) active learning driven by the maximization of empirically measured learning progress. We show how this generic framework allows to model several recent algorithmic architectures for exploration. Then, we propose a particular implementation using Gaussian Mixture Models, which at the same time provides an original empirical measure of the competence progress. Finally, we perform computer simulations on two simulated setups: the control of the end effector of a 7-DoF arm and the control of the formants produced by an articulatory synthesizer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发展机器人的探索策略:一个统一的概率框架
我们提出了一个概率框架,统一了两个重要的探索机制家族,最近被证明可以有效地学习复杂的非线性冗余感觉运动映射。这两种探索机制分别是:1)目标胡言乱语(goal babbling), 2)由经验测量的学习进度最大化驱动的主动学习。我们展示了这个通用框架如何允许对几个最近的算法架构进行建模以进行探索。然后,我们提出了一个使用高斯混合模型的特殊实现,该模型同时提供了一个原始的能力进步的经验度量。最后,我们对两种模拟设置进行了计算机模拟:7自由度手臂末端执行器的控制和铰接合成器产生的共振峰的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Epigenetic adaptation through hormone modulation in autonomous robots Attentional constraints and statistics in toddlers' word learning Do humans need learning to read humanoid lifting actions? Temporal emphasis for goal extraction in task demonstration to a humanoid robot by naive users Developing learnability — The case for reduced dimensionality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1