Construction of Heterojuncted Photocatalyst with TiO 2 Quantum Dots and Graphene Oxide Nanosheets for High-Efficient Photocatalysis

Guojing Wang, Fengqi Wang, Shuo Liu, Mingyang Li, Mingzheng Xie, Zhilong Yang, Yunjie Xiang, Shasha Lv, W. Han
{"title":"Construction of Heterojuncted Photocatalyst with TiO 2 Quantum Dots and Graphene Oxide Nanosheets for High-Efficient Photocatalysis","authors":"Guojing Wang, Fengqi Wang, Shuo Liu, Mingyang Li, Mingzheng Xie, Zhilong Yang, Yunjie Xiang, Shasha Lv, W. Han","doi":"10.2139/ssrn.3737310","DOIUrl":null,"url":null,"abstract":"To overcome the recombination issue of photocarriers, TiO2 quantum dots (QDs, nanoparticles in a few nanometers) were used to form heterojunctions with graphene oxide nanosheets. This combination has significantly enhanced the photocatalytic activity by providing more active reaction sites at the nanoscale surface and suppressing photocarrier recombination through fast separating the photocarriers by the internal electric field in the TiO2/graphene oxide heterojunctions. The enhancement in photocatalytic activity has been evidenced by the improved hydrogen generation rate in photoelectrochemical water splitting, about 30% higher than that of bare TiO2 QDs in the same situation. Moreover, the TiO2/graphene oxide composite also exhibits a lower flat band potential, which means a higher reducing potential of photo-excited electrons.","PeriodicalId":237724,"journal":{"name":"EngRN: Materials Chemistry (Topic)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Materials Chemistry (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3737310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome the recombination issue of photocarriers, TiO2 quantum dots (QDs, nanoparticles in a few nanometers) were used to form heterojunctions with graphene oxide nanosheets. This combination has significantly enhanced the photocatalytic activity by providing more active reaction sites at the nanoscale surface and suppressing photocarrier recombination through fast separating the photocarriers by the internal electric field in the TiO2/graphene oxide heterojunctions. The enhancement in photocatalytic activity has been evidenced by the improved hydrogen generation rate in photoelectrochemical water splitting, about 30% higher than that of bare TiO2 QDs in the same situation. Moreover, the TiO2/graphene oxide composite also exhibits a lower flat band potential, which means a higher reducing potential of photo-excited electrons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化钛量子点与氧化石墨烯纳米片异质结光催化剂的高效光催化研究
为了克服光载流子的重组问题,利用二氧化钛量子点(QDs,几纳米级的纳米粒子)与氧化石墨烯纳米片形成异质结。这种组合在纳米级表面提供了更多的活性反应位点,并通过TiO2/氧化石墨烯异质结中的内部电场快速分离光载流子来抑制光载流子的重组,从而显著增强了光催化活性。光催化活性的增强体现在光电化学水分解的产氢速率提高,比相同条件下裸TiO2量子点的产氢速率提高约30%。此外,TiO2/氧化石墨烯复合材料还表现出较低的平带电位,这意味着光激发电子的还原电位较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electric Field-Induced Grain Boundary Degradation Mechanism in Yttria Stabilized Zirconia Direct Observation of Modulation Structure in Room Temperature Multiferroic Bi 4.2K 0.8Fe 2O 9+δ Tuning the Microstructure of the Pt Layers Grown on Al 2O 3 (0001) by Different Sputtering Methods Micropillar Compression Deformation of Single Crystals of Fe 3Ge with the L1 2 Structure Construction of Heterojuncted Photocatalyst with TiO 2 Quantum Dots and Graphene Oxide Nanosheets for High-Efficient Photocatalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1