Numerics for hyperbolic partial differential equations (PDE) via Cellular Neural Networks (CNN)

D. Danciu
{"title":"Numerics for hyperbolic partial differential equations (PDE) via Cellular Neural Networks (CNN)","authors":"D. Danciu","doi":"10.1109/IcConSCS.2013.6632044","DOIUrl":null,"url":null,"abstract":"The paper proposes an Artificial Intelligence approach for computing an approximate solution for a hyperbolic partial differential equation (PDE) modeling the vibration of a drilling plant. The basic idea relies on using the repetitive structure induced by the Method of Lines for assigning a Cellular Neural Network (CNN) to perform the numerics. The method ensures from the beginning the convergence of the approximation and preserves the stability of the initial problem.","PeriodicalId":265358,"journal":{"name":"2nd International Conference on Systems and Computer Science","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd International Conference on Systems and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IcConSCS.2013.6632044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The paper proposes an Artificial Intelligence approach for computing an approximate solution for a hyperbolic partial differential equation (PDE) modeling the vibration of a drilling plant. The basic idea relies on using the repetitive structure induced by the Method of Lines for assigning a Cellular Neural Network (CNN) to perform the numerics. The method ensures from the beginning the convergence of the approximation and preserves the stability of the initial problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双曲型偏微分方程(PDE)的细胞神经网络数值解
本文提出了一种人工智能方法来计算模拟钻井设备振动的双曲型偏微分方程的近似解。基本思想依赖于使用由线法引起的重复结构来分配细胞神经网络(CNN)来执行数字。该方法从一开始就保证了逼近的收敛性,并保持了初始问题的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From bridge to control hub — The power Smart Grid evolution Data acquisition system for recording of photovoltaic panel power First order controller for a petrochemical pyrolysis reactor Audience indicators for geospatial marketing using traffic data from cellular networks Integrating wireless body and ambient sensors into a hybrid femtocell network for home monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1