Instrumental Sensibility of Vocal Detector Based on Spectral Features

Shayenne Moura, M. Queiroz
{"title":"Instrumental Sensibility of Vocal Detector Based on Spectral Features","authors":"Shayenne Moura, M. Queiroz","doi":"10.5753/sbcm.2019.10451","DOIUrl":null,"url":null,"abstract":"Detecting voice in a mixture of sound sources remains a challenging task in MIR research. The musical content can be perceived in many different ways as instrumentation varies. We evaluate how instrumentation affects singing voice detection in pieces using a standard spectral feature (MFCC). We trained Random Forest models with song remixes for specific subsets of sound sources, and compare it to models trained with the original songs. We thus present a preliminary analysis of the classification accuracy results.","PeriodicalId":338771,"journal":{"name":"Anais do Simpósio Brasileiro de Computação Musical (SBCM 2019)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio Brasileiro de Computação Musical (SBCM 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcm.2019.10451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting voice in a mixture of sound sources remains a challenging task in MIR research. The musical content can be perceived in many different ways as instrumentation varies. We evaluate how instrumentation affects singing voice detection in pieces using a standard spectral feature (MFCC). We trained Random Forest models with song remixes for specific subsets of sound sources, and compare it to models trained with the original songs. We thus present a preliminary analysis of the classification accuracy results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频谱特征的声音探测器的仪器灵敏度
在混合声源中检测声音仍然是MIR研究中的一项具有挑战性的任务。随着乐器的不同,音乐内容可以以许多不同的方式被感知。我们评估了使用标准频谱特征(MFCC)的仪器如何影响歌唱声音检测。我们针对特定的声源子集训练了带有歌曲混音的随机森林模型,并将其与使用原始歌曲训练的模型进行比较。因此,我们提出了分类精度结果的初步分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Batebit Controller: Popularizing Digital Musical Instruments' Technical Development Process Comparing Meta-Classifiers for Automatic Music Genre Classification Predicting Music Popularity on Streaming Platforms State of art of real-time singing voice synthesis O Chaos das 5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1