Hierarchical multi-label framework for robust face recognition

Lingfeng Zhang, Pengfei Dou, S. Shah, I. Kakadiaris
{"title":"Hierarchical multi-label framework for robust face recognition","authors":"Lingfeng Zhang, Pengfei Dou, S. Shah, I. Kakadiaris","doi":"10.1109/ICB.2015.7139086","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a patch based face recognition framework. First, a face image is iteratively divided into multi-level patches and assigned hierarchical labels. Second, local classifiers are built to learn the local prediction of each patch. Third, the hierarchical relationships defined between local patches are used to obtain the global prediction of each patch. We develop three ways to learn the global prediction: majority voting, ℓ1-regularized weighting, and decision rule. Last, the global predictions of different levels are combined as the final prediction. Experimental results on different face recognition tasks demonstrate the effectiveness of our method.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a patch based face recognition framework. First, a face image is iteratively divided into multi-level patches and assigned hierarchical labels. Second, local classifiers are built to learn the local prediction of each patch. Third, the hierarchical relationships defined between local patches are used to obtain the global prediction of each patch. We develop three ways to learn the global prediction: majority voting, ℓ1-regularized weighting, and decision rule. Last, the global predictions of different levels are combined as the final prediction. Experimental results on different face recognition tasks demonstrate the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒人脸识别的分层多标签框架
本文提出了一种基于补丁的人脸识别框架。首先,将人脸图像迭代划分为多层次的小块,并分配分层标签;其次,构建局部分类器来学习每个patch的局部预测。第三,利用局部补丁之间定义的层次关系,得到每个补丁的全局预测;我们开发了三种学习全局预测的方法:多数投票、1-正则化加权和决策规则。最后,将不同层次的全局预测组合起来作为最终预测。不同人脸识别任务的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1