{"title":"A SystemC AMS/TLM platform for CMOS video sensors","authors":"Fabio Cenni, S. Scotti, E. Simeu","doi":"10.1109/DASIP.2011.6136873","DOIUrl":null,"url":null,"abstract":"This work presents how an image acquisition system based on a CMOS image sensor (CIS) has been modeled by means of the recently standardized analog and mixed-signal (AMS) extension to the SystemC 1666 IEEE standard. Many optical and electrical effects at a high level of abstraction are described by the model while limiting the model complexity for making the model suitable to top-level simulations and performance analysis. A comparison among SystemC AMS models developed at different levels of abstraction is shown. The Sys-temC AMS model of the image sensor is supplied with input scenarios that mimic the scene captured by an image sensor inserted in a dark-box for tuning purposes. The model is integrated in a SystemC TLM platform that contains also the image signal processor (ISP) algorithms and a comparator between the detected image and the processed one. The resulting SystemC AMS/TLM platform demonstrates how the tight interaction between the SystemC AMS image sensor model and the SystemC TLM ISP model allows an early development/validation of the embedded software. Simulation results are shown and future related works discussed.","PeriodicalId":199500,"journal":{"name":"Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2011.6136873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This work presents how an image acquisition system based on a CMOS image sensor (CIS) has been modeled by means of the recently standardized analog and mixed-signal (AMS) extension to the SystemC 1666 IEEE standard. Many optical and electrical effects at a high level of abstraction are described by the model while limiting the model complexity for making the model suitable to top-level simulations and performance analysis. A comparison among SystemC AMS models developed at different levels of abstraction is shown. The Sys-temC AMS model of the image sensor is supplied with input scenarios that mimic the scene captured by an image sensor inserted in a dark-box for tuning purposes. The model is integrated in a SystemC TLM platform that contains also the image signal processor (ISP) algorithms and a comparator between the detected image and the processed one. The resulting SystemC AMS/TLM platform demonstrates how the tight interaction between the SystemC AMS image sensor model and the SystemC TLM ISP model allows an early development/validation of the embedded software. Simulation results are shown and future related works discussed.