DIFFERENTIALLY PRIVATE SPARSE INVERSE COVARIANCE ESTIMATION

Di Wang, Mengdi Huai, Jinhui Xu
{"title":"DIFFERENTIALLY PRIVATE SPARSE INVERSE COVARIANCE ESTIMATION","authors":"Di Wang, Mengdi Huai, Jinhui Xu","doi":"10.1109/GlobalSIP.2018.8646444","DOIUrl":null,"url":null,"abstract":"In this paper, we present the first results on the sparse inverse covariance estimation problem under the differential privacy model. We first gave an ε-differentially private algorithm using output perturbation strategy, which is based on the sensitivity of the optimization problem and the Wishart mechanism. To further improve this result, we then introduce a general covariance perturbation method to achieve both ε-differential privacy and (ε, δ)-differential privacy. For ε-differential privacy, we analyze the performance of Laplacian and Wishart mechanisms, and for (ε, δ)-differential privacy, we examine the performance of Gaussian and Wishart mechanisms. Experiments on both synthetic and benchmark datasets confirm our theoretical analysis.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present the first results on the sparse inverse covariance estimation problem under the differential privacy model. We first gave an ε-differentially private algorithm using output perturbation strategy, which is based on the sensitivity of the optimization problem and the Wishart mechanism. To further improve this result, we then introduce a general covariance perturbation method to achieve both ε-differential privacy and (ε, δ)-differential privacy. For ε-differential privacy, we analyze the performance of Laplacian and Wishart mechanisms, and for (ε, δ)-differential privacy, we examine the performance of Gaussian and Wishart mechanisms. Experiments on both synthetic and benchmark datasets confirm our theoretical analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
差分私有稀疏逆协方差估计
本文给出了差分隐私模型下稀疏反协方差估计问题的初步结果。首先基于优化问题的敏感性和Wishart机制,提出了一种基于输出摄动策略的ε-差分私有算法。为了进一步改进这一结果,我们引入了一种通用的协方差摄动方法来实现ε-微分隐私和(ε, δ)-微分隐私。对于ε-微分隐私,我们分析了拉普拉斯机制和Wishart机制的性能,对于(ε, δ)-微分隐私,我们研究了高斯机制和Wishart机制的性能。在合成数据集和基准数据集上的实验证实了我们的理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1