GPU-accelerated surface denoising and morphing with lattice Boltzmann scheme

Ye Zhao
{"title":"GPU-accelerated surface denoising and morphing with lattice Boltzmann scheme","authors":"Ye Zhao","doi":"10.1109/SMI.2008.4547942","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a parallel numerical scheme, the Lattice Boltzmann method, to shape modeling applications. The motivation of using this originally-designed fluid dynamics solver in surface modeling is its simplicity, locality, parallelism from the cellular-automata-originated updating rules, which can directly be mapped onto modern graphics hardware. A surface is implicitly represented by the signed distance field. The distances are then used in a modified LBM scheme as its computing primitive, instead of the densities in traditional LBM. The scheme can simulate curvature motions to smooth the surface with a diffusion process. Furthermore, an initial value level set method can be implemented for surface morphing. The distance difference between a morphing surface and a target surface defines the speed function of the evolving level sets, and is used as the driving force in the LBM. Our GPU-accelerated LBM algorithm has achieved outstanding performance for the denoising and morphing examples. It has the great potential to be further applied as a general GPU computing framework to many other solid and shape modeling applications.","PeriodicalId":118774,"journal":{"name":"2008 IEEE International Conference on Shape Modeling and Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Shape Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2008.4547942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we introduce a parallel numerical scheme, the Lattice Boltzmann method, to shape modeling applications. The motivation of using this originally-designed fluid dynamics solver in surface modeling is its simplicity, locality, parallelism from the cellular-automata-originated updating rules, which can directly be mapped onto modern graphics hardware. A surface is implicitly represented by the signed distance field. The distances are then used in a modified LBM scheme as its computing primitive, instead of the densities in traditional LBM. The scheme can simulate curvature motions to smooth the surface with a diffusion process. Furthermore, an initial value level set method can be implemented for surface morphing. The distance difference between a morphing surface and a target surface defines the speed function of the evolving level sets, and is used as the driving force in the LBM. Our GPU-accelerated LBM algorithm has achieved outstanding performance for the denoising and morphing examples. It has the great potential to be further applied as a general GPU computing framework to many other solid and shape modeling applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于栅格玻尔兹曼格式的gpu加速表面去噪与变形
在本文中,我们介绍了一种并行数值格式,晶格玻尔兹曼方法,以形状建模的应用。在曲面建模中使用这种流体动力学求解器的动机是它的简单性,局部性,与元胞自动机起源的更新规则并行,可以直接映射到现代图形硬件。曲面由带符号距离场隐式表示。然后在改进的LBM方案中使用距离作为其计算基元,而不是传统LBM中的密度。该方案可以模拟曲率运动,以扩散过程平滑表面。此外,还可以采用初始值水平集方法实现曲面变形。变形曲面与目标曲面之间的距离差定义了进化水平集的速度函数,并作为LBM的驱动力。我们的gpu加速LBM算法在去噪和变形示例中取得了出色的性能。作为一个通用的GPU计算框架,它有很大的潜力可以进一步应用于许多其他实体和形状建模应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-organizing primitives for automated shape composition SHREC’08 entry: 3D model retrieval based on the V system invariant moment SHape REtrieval contest 2008: 3D face scans Efficient solution to systems of multivariate polynomials using expression trees SHape REtrieval Contest (SHREC) 2008
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1