{"title":"GPU-accelerated surface denoising and morphing with lattice Boltzmann scheme","authors":"Ye Zhao","doi":"10.1109/SMI.2008.4547942","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a parallel numerical scheme, the Lattice Boltzmann method, to shape modeling applications. The motivation of using this originally-designed fluid dynamics solver in surface modeling is its simplicity, locality, parallelism from the cellular-automata-originated updating rules, which can directly be mapped onto modern graphics hardware. A surface is implicitly represented by the signed distance field. The distances are then used in a modified LBM scheme as its computing primitive, instead of the densities in traditional LBM. The scheme can simulate curvature motions to smooth the surface with a diffusion process. Furthermore, an initial value level set method can be implemented for surface morphing. The distance difference between a morphing surface and a target surface defines the speed function of the evolving level sets, and is used as the driving force in the LBM. Our GPU-accelerated LBM algorithm has achieved outstanding performance for the denoising and morphing examples. It has the great potential to be further applied as a general GPU computing framework to many other solid and shape modeling applications.","PeriodicalId":118774,"journal":{"name":"2008 IEEE International Conference on Shape Modeling and Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Shape Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2008.4547942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, we introduce a parallel numerical scheme, the Lattice Boltzmann method, to shape modeling applications. The motivation of using this originally-designed fluid dynamics solver in surface modeling is its simplicity, locality, parallelism from the cellular-automata-originated updating rules, which can directly be mapped onto modern graphics hardware. A surface is implicitly represented by the signed distance field. The distances are then used in a modified LBM scheme as its computing primitive, instead of the densities in traditional LBM. The scheme can simulate curvature motions to smooth the surface with a diffusion process. Furthermore, an initial value level set method can be implemented for surface morphing. The distance difference between a morphing surface and a target surface defines the speed function of the evolving level sets, and is used as the driving force in the LBM. Our GPU-accelerated LBM algorithm has achieved outstanding performance for the denoising and morphing examples. It has the great potential to be further applied as a general GPU computing framework to many other solid and shape modeling applications.