Data Augmentation to Improve the diagnosis of Melanoma using Convolutional Neural Networks

Yifan Yang
{"title":"Data Augmentation to Improve the diagnosis of Melanoma using Convolutional Neural Networks","authors":"Yifan Yang","doi":"10.1145/3448748.3448773","DOIUrl":null,"url":null,"abstract":"Early diagnosis of melanoma can substantially increase patient survival rate. Currently, dermoscopy is the dominant approach for clinical detection, but this method requires interaction with a trained clinical professional resulting in a financial burden which is a major limiting factor for many patients, especially those in remote and rural locations. It has been proposed that deep convolutional neural networks (CNNs) could allow an automated approaches for diagnosis of melanoma. However, there has been limited work regarding the use of CNNs to diagnose melanoma due to a limited amount of labelled training data available, a major limiting factor for the implementation of CNNs. This study utilises data augmentation techniques to improve CNN performance for diagnosis of melanoma, resulting a 12.4% increase in validation accuracy despite the collection of no additional training data.","PeriodicalId":115821,"journal":{"name":"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448748.3448773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Early diagnosis of melanoma can substantially increase patient survival rate. Currently, dermoscopy is the dominant approach for clinical detection, but this method requires interaction with a trained clinical professional resulting in a financial burden which is a major limiting factor for many patients, especially those in remote and rural locations. It has been proposed that deep convolutional neural networks (CNNs) could allow an automated approaches for diagnosis of melanoma. However, there has been limited work regarding the use of CNNs to diagnose melanoma due to a limited amount of labelled training data available, a major limiting factor for the implementation of CNNs. This study utilises data augmentation techniques to improve CNN performance for diagnosis of melanoma, resulting a 12.4% increase in validation accuracy despite the collection of no additional training data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络提高黑色素瘤诊断的数据增强
黑色素瘤的早期诊断可以大大提高患者的存活率。目前,皮肤镜检查是临床检测的主要方法,但这种方法需要与训练有素的临床专业人员互动,导致经济负担,这是许多患者,特别是偏远和农村地区患者的主要限制因素。有人提出,深度卷积神经网络(cnn)可以实现黑色素瘤诊断的自动化方法。然而,由于可用的标记训练数据数量有限,使用cnn诊断黑色素瘤的工作有限,这是cnn实施的主要限制因素。本研究利用数据增强技术来提高CNN诊断黑色素瘤的性能,在没有收集额外训练数据的情况下,验证准确率提高了12.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Picard Versions for Analyzing functional Magnetic Resonance Imaging Data Study on Dispatching Model of Block Economy Based-Data Mining A Modified HOG Algorithm based on the Prewitt Operator RNA-seq Reveals the Increased Risk of Heart and Cardiovascular Disease by SARS-CoV-2 Infection Curative Effect of Tongyu Decoction on Neurological Deficit and Rehabilitation Effect of Patients with Cerebral Hemorrhage in Recovery Period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1