Re-architecting Distributed Block Storage System for Improving Random Write Performance

Myoungwon Oh, Jiwoong Park, S. Park, Adel Choi, Jongyoul Lee, Jin-Hyeok Choi, H. Yeom
{"title":"Re-architecting Distributed Block Storage System for Improving Random Write Performance","authors":"Myoungwon Oh, Jiwoong Park, S. Park, Adel Choi, Jongyoul Lee, Jin-Hyeok Choi, H. Yeom","doi":"10.1109/ICDCS51616.2021.00019","DOIUrl":null,"url":null,"abstract":"In cloud ecosystems, distributed block storage systems are used to provide a persistent block storage service, which is the fundamental building block for operating cloud native services. However, existing distributed storage systems performed poorly for random write workloads in an all-NVMe storage configuration, becoming CPU-bottlenecked. Our roofline-based approach to performance analysis on a conventional distributed block storage system with NVMe SSDs reveals that the bottleneck does not lie in one specific software module, but across the entire software stack; (1) tightly coupled I/O processing, (2) inefficient threading architecture, and (3) local backend data store causing excessive CPU usage. To this end, we re-architect a modern distributed block storage system for improving random write performance. The key ingredients of our system are (1) decoupled operation processing using non-volatile memory, (2) prioritized thread control, and (3) CPU-efficient backend data store. Our system emphasizes low CPU overhead and high CPU efficiency to efficiently utilize NVMe SSDs in a distributed storage environment. We implement our system in Ceph. Compared to the native Ceph, our prototype system delivers more than 3x performance improvement for small random write I/Os in terms of both IOPS and latency by efficiently utilizing CPU cores.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In cloud ecosystems, distributed block storage systems are used to provide a persistent block storage service, which is the fundamental building block for operating cloud native services. However, existing distributed storage systems performed poorly for random write workloads in an all-NVMe storage configuration, becoming CPU-bottlenecked. Our roofline-based approach to performance analysis on a conventional distributed block storage system with NVMe SSDs reveals that the bottleneck does not lie in one specific software module, but across the entire software stack; (1) tightly coupled I/O processing, (2) inefficient threading architecture, and (3) local backend data store causing excessive CPU usage. To this end, we re-architect a modern distributed block storage system for improving random write performance. The key ingredients of our system are (1) decoupled operation processing using non-volatile memory, (2) prioritized thread control, and (3) CPU-efficient backend data store. Our system emphasizes low CPU overhead and high CPU efficiency to efficiently utilize NVMe SSDs in a distributed storage environment. We implement our system in Ceph. Compared to the native Ceph, our prototype system delivers more than 3x performance improvement for small random write I/Os in terms of both IOPS and latency by efficiently utilizing CPU cores.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重构分布式块存储系统,提高随机写性能
在云生态系统中,分布式块存储系统提供持久的块存储服务,是运行云原生服务的基础构建块。然而,现有的分布式存储系统在全nvme存储配置下的随机写工作负载表现不佳,成为cpu瓶颈。我们对传统的带有NVMe ssd的分布式块存储系统进行了基于屋顶线的性能分析,结果表明,瓶颈并不存在于某个特定的软件模块中,而是存在于整个软件堆栈中;(1)紧密耦合的I/O处理;(2)低效的线程架构;(3)本地后端数据存储导致过多的CPU使用。为此,我们重新构建了一个现代分布式块存储系统,以提高随机写入性能。我们系统的关键组成部分是:(1)使用非易失性内存的解耦操作处理,(2)优先级线程控制,以及(3)cpu高效的后端数据存储。我们的系统强调低CPU开销和高CPU效率,以便在分布式存储环境中有效地利用NVMe ssd。我们在Ceph中实现我们的系统。与原生Ceph相比,我们的原型系统通过有效利用CPU内核,在IOPS和延迟方面为小型随机写I/ o提供了3倍以上的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical Location Privacy Attacks and Defense on Point-of-interest Aggregates Hand-Key: Leveraging Multiple Hand Biometrics for Attack-Resilient User Authentication Using COTS RFID Recognizing 3D Orientation of a Two-RFID-Tag Labeled Object in Multipath Environments Using Deep Transfer Learning The Vertical Cuckoo Filters: A Family of Insertion-friendly Sketches for Online Applications Dyconits: Scaling Minecraft-like Services through Dynamically Managed Inconsistency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1