Knowledge Fusion and Spatiotemporal Data Cleaning: A Review

Huchen Zhou, Mohan Li, Zhaoquan Gu
{"title":"Knowledge Fusion and Spatiotemporal Data Cleaning: A Review","authors":"Huchen Zhou, Mohan Li, Zhaoquan Gu","doi":"10.1109/DSC50466.2020.00052","DOIUrl":null,"url":null,"abstract":"Knowledge fusion is aimed to establish the relationship between heterogeneous ontology or heterogeneous instances. Data cleaning is one of the key technologies for solving knowledge fusion problems. In this paper, we provide a brief survey of knowledge fusion and data cleaning. We first briefly introduce the importance and background of knowledge fusion and data cleaning. Then we discuss some recent methods for knowledge fusion and spatiotemporal data cleaning. Finally, we outline some future directions of knowledge fusion and data cleaning.","PeriodicalId":423182,"journal":{"name":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC50466.2020.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Knowledge fusion is aimed to establish the relationship between heterogeneous ontology or heterogeneous instances. Data cleaning is one of the key technologies for solving knowledge fusion problems. In this paper, we provide a brief survey of knowledge fusion and data cleaning. We first briefly introduce the importance and background of knowledge fusion and data cleaning. Then we discuss some recent methods for knowledge fusion and spatiotemporal data cleaning. Finally, we outline some future directions of knowledge fusion and data cleaning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
知识融合与时空数据清洗研究进展
知识融合旨在建立异构本体或异构实例之间的关系。数据清洗是解决知识融合问题的关键技术之一。本文简要介绍了知识融合和数据清洗的研究现状。我们首先简要介绍了知识融合和数据清洗的重要性和背景。然后讨论了知识融合和时空数据清理的最新方法。最后,展望了知识融合和数据清洗的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Parallel Algorithm for Graph Transaction Based Frequent Subgraph Mining A Review of APT Attack Detection Methods and Defense Strategies Temperature Prediction Modeling and Control Parameter optimization Based on Data Driven GPU-BTM: A Topic Model for Short Text using Auxiliary Information An APT Attack Analysis Framework Based on Self-define Rules and Mapreduce
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1