Missing texture reconstruction via power spectrum-based sparse representation

Yuma Tanaka, Takahiro Ogawa, M. Haseyama
{"title":"Missing texture reconstruction via power spectrum-based sparse representation","authors":"Yuma Tanaka, Takahiro Ogawa, M. Haseyama","doi":"10.1109/GCCE.2015.7398560","DOIUrl":null,"url":null,"abstract":"This paper presents a method for missing texture reconstruction via power spectrum-based sparse representation. We reconstruct missing areas based on minimizing the mean square error between power spectra (P-MSE). In our method, missing areas are reconstructed by embedding some known patches. Mathematically, we obtain the optimal linear combination of measurement patches by P-MSE minimization. The optimization can be solved as a combinatorial problem based on sparse representation. In this way, the optimal approximation which minimizes the P-MSE is obtained and we embed it in the missing area. Experimental results show effectiveness of our method for reconstructing texture images.","PeriodicalId":363743,"journal":{"name":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2015.7398560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a method for missing texture reconstruction via power spectrum-based sparse representation. We reconstruct missing areas based on minimizing the mean square error between power spectra (P-MSE). In our method, missing areas are reconstructed by embedding some known patches. Mathematically, we obtain the optimal linear combination of measurement patches by P-MSE minimization. The optimization can be solved as a combinatorial problem based on sparse representation. In this way, the optimal approximation which minimizes the P-MSE is obtained and we embed it in the missing area. Experimental results show effectiveness of our method for reconstructing texture images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于功率谱稀疏表示的缺失纹理重建
提出了一种基于功率谱稀疏表示的缺失纹理重建方法。我们基于最小化功率谱均方误差(P-MSE)来重建缺失区域。在我们的方法中,通过嵌入一些已知的补丁来重建缺失区域。在数学上,我们通过P-MSE最小化得到测量片的最优线性组合。该优化可以作为一个基于稀疏表示的组合问题来解决。通过这种方法,得到了使P-MSE最小的最优逼近,并将其嵌入到缺失区域中。实验结果表明了该方法对纹理图像重建的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient data loading mechanism for list-style UI with content separation and parallel processing in mobile systems Extension with intelligent agents for the spoken dialogue system for smartphones Story creation approach for sensor network application development Block-based SRAM architecture and thermal-aware memory mappings for three-dimensional channel decoding systems On an efficient masking system using human head tracking parametric speaker system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1