{"title":"Extension and measurements on multicomponent phospholipid vesicles by use of dual-beam optical tweezers","authors":"M. Ichikawa, Y. Shitamichi, Y. Kimura","doi":"10.1109/MHS.2009.5351928","DOIUrl":null,"url":null,"abstract":"A micrometer-sized giant vesicle is studied by extending from the inside by using dual-beam optical tweezers in order to measure mechanical properties such as bending rigidity and surface tension of the membrane. As a micrometer-sized vesicle is extended, its shape gradually changes from a sphere to a lemon-shape, and discretely the lemon-shape deforms into a shape of a tube beside a sphere or a lemon part. The surface tension and the bending rigidity of the lipid membrane are obtained from the measured force-extension curve. In the one-phase vesicle, it is found that the surface tension is increasing as the charged component increasing, but the bending rigidity remains almost constant. In the phase-separated vesicle, the characteristic deformation different from one in the one-phase vesicle has been observed.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Micro-NanoMechatronics and Human Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2009.5351928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A micrometer-sized giant vesicle is studied by extending from the inside by using dual-beam optical tweezers in order to measure mechanical properties such as bending rigidity and surface tension of the membrane. As a micrometer-sized vesicle is extended, its shape gradually changes from a sphere to a lemon-shape, and discretely the lemon-shape deforms into a shape of a tube beside a sphere or a lemon part. The surface tension and the bending rigidity of the lipid membrane are obtained from the measured force-extension curve. In the one-phase vesicle, it is found that the surface tension is increasing as the charged component increasing, but the bending rigidity remains almost constant. In the phase-separated vesicle, the characteristic deformation different from one in the one-phase vesicle has been observed.