Chu Zhang, Chao Yang, Liang Hu, Shuyang Chen, Yifan Zhao, Li Duan, Qi Kang
{"title":"Beijing Drop Tower Microgravity Adjustment Towards 10–3 ~ 10−5g Level by Cold-Gas Thrusters","authors":"Chu Zhang, Chao Yang, Liang Hu, Shuyang Chen, Yifan Zhao, Li Duan, Qi Kang","doi":"10.1007/s12217-023-10060-1","DOIUrl":null,"url":null,"abstract":"<div><p>Drop tower is an important facility for conducting microgravity experiments on the ground. Since the Beijing drop tower was put into operation in 2003, a large number of scientific experiments have been carried out in the fields of microgravity fluid physics, combustion, materials science and fundamental physics. The drop tower has two operation modes: single capsule falling and double capsule falling, with the microgravity levels reaching 10<sup>−2</sup>g ~ 10<sup>−3</sup>g and 10<sup>−5</sup>g respectively. In order to meet the demand of multi-level microgravity levels in ground microgravity experiments, a double capsule microgravity level control system based on the cold-gas micro thruster is developed. The micro thrusters are mounted in the inner capsule of the double capsule system. During the fall of the double capsule, the cold-gas micro thrusters thrust in the opposite direction of the movement of the structure, which increases the resistance of the inner capsule to realize the control of microgravity level. The measurement results of the high-precision accelerometer show that the 10<sup>–3</sup> ~ 10<sup>−5</sup>g microgravity level can be controlled by this system.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10060-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Drop tower is an important facility for conducting microgravity experiments on the ground. Since the Beijing drop tower was put into operation in 2003, a large number of scientific experiments have been carried out in the fields of microgravity fluid physics, combustion, materials science and fundamental physics. The drop tower has two operation modes: single capsule falling and double capsule falling, with the microgravity levels reaching 10−2g ~ 10−3g and 10−5g respectively. In order to meet the demand of multi-level microgravity levels in ground microgravity experiments, a double capsule microgravity level control system based on the cold-gas micro thruster is developed. The micro thrusters are mounted in the inner capsule of the double capsule system. During the fall of the double capsule, the cold-gas micro thrusters thrust in the opposite direction of the movement of the structure, which increases the resistance of the inner capsule to realize the control of microgravity level. The measurement results of the high-precision accelerometer show that the 10–3 ~ 10−5g microgravity level can be controlled by this system.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology