首页 > 最新文献

Microgravity Science and Technology最新文献

英文 中文
Correlation Between Invariable Blood Proteins and Heart Rate Variability in Long-Duration Space Flights 长期太空飞行中不变的血液蛋白质与心率变异性之间的相关性
IF 1.8 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-09-18 DOI: 10.1007/s12217-024-10139-3
Ludmila Pastushkova, Vasily Rusanov, Anna Goncharova, Darya Kashirina, Andrey Nosovsky, Elena Luchitskaya, Tatyana Krapivnitskaya, Irina Larina

The article analyzes how long-duration space missions’ effect on the heart rate variability parameters and invariable blood proteins. The results are discussed taking into correlation between them. Seven Russian cosmonauts took part in the research during their missions to the International Space Station. Samples of dry blood drops were collected as part of the space experiment ''OMICs-DBS'', electrocardiogram samples were collected as part of the space experiment "Cardiovector". We have established a linear relationship between the concentrations of the following proteins: complement C1q subcomponent subunit A (encoded by the C1QA gene), complement C1r subcomponent (encoded by the C1R gene), fibrinogen gamma chain (encoded by the FGG gene),galectin-3 (encoded by the LGALS3 gene), interstitial collagenase or matrix metalloproteinase-1 (encoded by the MMP-1 gene), pigment epithelium-derived factor (encoded by the PEDF gene) and frequency-domain heart rate variability (HRV) parameters at some stages of space flight. Three proteins were associated with of total power parameters, and either positively correlated with the low-frequency (LF) domain as in the case of the C1QA (complement C1q subcomponent subunit A) or negatively - LGALS3, MMP-1 (galectin-3, matrix metalloproteinase-1) correlated with the high-frequency domain (HF). One of the proteins, the PEDF (pigment epithelium-derived factor), positively correlated with the HF, which correspondingly reflected the effect of vagal modulation on the SA node. The Complement C1r subcomponent had positive correlations with both HF and LF. The FGG (fibrinogen gamma chain) was negatively correlated with both individual components of the frequency-domain (HF, ms2 and LF ms2) also its total power. We assume that such statistical relationships reflect the tension of regulatory mechanisms, which is consistent with classical studies of autonomic regulation in space flight.

文章分析了长期太空任务对心率变异参数和不变血液蛋白质的影响。文章在讨论结果时考虑到了它们之间的相关性。七名俄罗斯宇航员在执行国际空间站任务期间参加了这项研究。在太空实验 "OMICs-DBS "中收集了干血滴样本,在太空实验 "Cardiovector "中收集了心电图样本。我们确定了以下蛋白质浓度之间的线性关系:补体 C1q 亚组分亚单位 A(由 C1QA 基因编码)、补体 C1r 亚组分(由 C1R 基因编码)、纤维蛋白原 gamma 链(由 FGG 基因编码)、galectin-3(由 LGALS3 基因编码)、在太空飞行的某些阶段,三种蛋白质与间质胶原酶或基质金属蛋白酶-1(由 MMP-1 基因编码)、色素上皮衍生因子(由 PEDF 基因编码)和频域心率变异性(HRV)参数有关。有三种蛋白质与总功率参数有关,它们或者与低频域(LF)正相关,如 C1QA(补体 C1q 亚组分亚单位 A),或者与高频域(HF)负相关,如 LGALS3 和 MMP-1(galectin-3,基质金属蛋白酶-1)。其中一种蛋白质 PEDF(色素上皮衍生因子)与高频正相关,这相应地反映了迷走神经对 SA 节点的调节作用。补体 C1r 亚组分与高频和低频均呈正相关。FGG(纤维蛋白原γ链)与频域的单个分量(HF、ms2 和 LF ms2)及其总功率均呈负相关。我们认为,这种统计关系反映了调节机制的紧张程度,这与太空飞行中自律神经调节的经典研究是一致的。
{"title":"Correlation Between Invariable Blood Proteins and Heart Rate Variability in Long-Duration Space Flights","authors":"Ludmila Pastushkova, Vasily Rusanov, Anna Goncharova, Darya Kashirina, Andrey Nosovsky, Elena Luchitskaya, Tatyana Krapivnitskaya, Irina Larina","doi":"10.1007/s12217-024-10139-3","DOIUrl":"https://doi.org/10.1007/s12217-024-10139-3","url":null,"abstract":"<p>The article analyzes how long-duration space missions’ effect on the heart rate variability parameters and invariable blood proteins. The results are discussed taking into correlation between them. Seven Russian cosmonauts took part in the research during their missions to the International Space Station. Samples of dry blood drops were collected as part of the space experiment ''OMICs-DBS'', electrocardiogram samples were collected as part of the space experiment \"Cardiovector\". We have established a linear relationship between the concentrations of the following proteins: complement C1q subcomponent subunit A (encoded by the C1QA gene), complement C1r subcomponent (encoded by the C1R gene), fibrinogen gamma chain (encoded by the FGG gene),galectin-3 (encoded by the LGALS3 gene), interstitial collagenase or matrix metalloproteinase-1 (encoded by the MMP-1 gene), pigment epithelium-derived factor (encoded by the PEDF gene) and frequency-domain heart rate variability (HRV) parameters at some stages of space flight. Three proteins were associated with of total power parameters, and either positively correlated with the low-frequency (LF) domain as in the case of the C1QA (complement C1q subcomponent subunit A) or negatively - LGALS3, MMP-1 (galectin-3, matrix metalloproteinase-1) correlated with the high-frequency domain (HF). One of the proteins, the PEDF (pigment epithelium-derived factor), positively correlated with the HF, which correspondingly reflected the effect of vagal modulation on the SA node. The Complement C1r subcomponent had positive correlations with both HF and LF. The FGG (fibrinogen gamma chain) was negatively correlated with both individual components of the frequency-domain (HF, ms2 and LF ms2) also its total power. We assume that such statistical relationships reflect the tension of regulatory mechanisms, which is consistent with classical studies of autonomic regulation in space flight.</p>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Investigation on Mechanism Analysis of Bubble Pinch-off 气泡捏合机理分析的数值研究
IF 1.8 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-09-14 DOI: 10.1007/s12217-024-10138-4
Meng Jia, Mingjun Pang

The studies on bubble pinch − off deviates to some degree from the actual situation due to limitations in theoretical assumptions and experimental conditions, and physical details such as satellite bubbles inside the bubble cannot be observed. Even some of the published experimental results are divergent. To fully understand the dynamics of bubble pinch − off, the authors applied the volume of fluid (VOF) method to investigate the effect of liquid − phase viscosity on bubble pinch − off, and analyzed the pinch − off process and the surrounding flow field. It was found that in low − viscosity liquids, the process of bubble pinch − off is relatively fast and the position corresponding to Rmin varies only in the axial direction; and satellite bubbles during pinch − off shows vertical distribution, which enter the upper and lower parts with the jet after bubble pinch − off. In intermediate and high viscosity liquids, a gas line is formed after bubble pinch − off, and the length and duration of the gas line increase with an increase in liquid − phase viscosity; and the position corresponding to Rmin moves not only radially inward, but also axially upward. In liquids of different viscosities, the strength of annular flow and the radial pressure drop are different, which leads to different phenomena of bubble pinch − off.

由于理论假设和实验条件的限制,对气泡挤压的研究在一定程度上偏离了实际情况,而且无法观察到气泡内部的卫星气泡等物理细节。甚至一些已公布的实验结果也存在偏差。为了充分理解气泡夹断的动力学原理,作者采用流体体积(VOF)方法研究了液相粘度对气泡夹断的影响,并分析了夹断过程和周围流场。研究发现,在低粘度液体中,气泡夹灭过程相对较快,Rmin 所对应的位置仅在轴向发生变化;夹灭过程中的卫星气泡呈垂直分布,气泡夹灭后随射流进入上下两部分。在中粘度和高粘度液体中,气泡夹断后会形成气路,气路的长度和持续时间随着液相粘度的增加而增加;Rmin 对应的位置不仅径向向内移动,而且轴向向上移动。在不同粘度的液体中,环形流动的强度和径向压降不同,从而导致不同的气泡夹断现象。
{"title":"Numerical Investigation on Mechanism Analysis of Bubble Pinch-off","authors":"Meng Jia, Mingjun Pang","doi":"10.1007/s12217-024-10138-4","DOIUrl":"https://doi.org/10.1007/s12217-024-10138-4","url":null,"abstract":"<p>The studies on bubble pinch − off deviates to some degree from the actual situation due to limitations in theoretical assumptions and experimental conditions, and physical details such as satellite bubbles inside the bubble cannot be observed. Even some of the published experimental results are divergent. To fully understand the dynamics of bubble pinch − off, the authors applied the volume of fluid (VOF) method to investigate the effect of liquid − phase viscosity on bubble pinch − off, and analyzed the pinch − off process and the surrounding flow field. It was found that in low − viscosity liquids, the process of bubble pinch − off is relatively fast and the position corresponding to <i>R</i><sub><i>min</i></sub> varies only in the axial direction; and satellite bubbles during pinch − off shows vertical distribution, which enter the upper and lower parts with the jet after bubble pinch − off. In intermediate and high viscosity liquids, a gas line is formed after bubble pinch − off, and the length and duration of the gas line increase with an increase in liquid − phase viscosity; and the position corresponding to <i>R</i><sub><i>min</i></sub> moves not only radially inward, but also axially upward. In liquids of different viscosities, the strength of annular flow and the radial pressure drop are different, which leads to different phenomena of bubble pinch − off.</p>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Study on Startup Performance of a High-temperature Liquid Metal Heat Pipe with Fins 带鳍片的高温液态金属热管启动性能实验研究
IF 1.8 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-09-09 DOI: 10.1007/s12217-024-10137-5
Zhi-Hu Xue, Wei Qu

This paper presents the experimental results of a high-temperature heat pipe with fins at horizontal. The heat pipe tube is designed to Φ25 × 410 mm, two wraps of 100 mesh screen, and filling mass of 15 g sodium. The height and thickness of the fins are 13 mm and 1 mm, and the gap distance between two fins is 5 mm. The wall material of the tube container and fins both are stainless steel. In order to compare the impact of the fins on the startup performance of the heat pipe, a plain-tube high-temperature heat pipe without fins which has the same dimensions is also comparatively experimented. The experimental results show that the finned heat pipe can start successfully and its end of condenser behaves bright red color, which is roughly in accordance with the results of the plain-tube heat pipe. The comparative results also show that the startup time of full startup and the temperature difference between evaporator and condenser after fully starting for the finned heat pipe and plain-tube heat pipe are similarly same. However, adding fins in condenser have a great effect on the temperature rise-rate during starting process and the quasi-steady or equilibrium temperature after startup between the results of two heat pipes.

本文介绍了带水平翅片的高温热管的实验结果。热管管径设计为 Φ25 × 410 mm,两层包裹 100 目筛网,填充质量为 15 g 钠。翅片的高度和厚度分别为 13 毫米和 1 毫米,两片翅片之间的间隙距离为 5 毫米。管状容器和翅片的壁材料均为不锈钢。为了比较翅片对热管启动性能的影响,还对尺寸相同的无翅片普通管高温热管进行了对比实验。实验结果表明,带翅片热管可以成功启动,其冷凝器末端表现为鲜红色,与普通管式热管的结果基本一致。对比结果还表明,翅片管热管和普通管热管的完全启动时间以及完全启动后蒸发器和冷凝器之间的温差基本相同。然而,在冷凝器中添加翅片对启动过程中的温度上升率以及启动后的准稳态或平衡温度有很大影响。
{"title":"Experimental Study on Startup Performance of a High-temperature Liquid Metal Heat Pipe with Fins","authors":"Zhi-Hu Xue, Wei Qu","doi":"10.1007/s12217-024-10137-5","DOIUrl":"https://doi.org/10.1007/s12217-024-10137-5","url":null,"abstract":"<p>This paper presents the experimental results of a high-temperature heat pipe with fins at horizontal. The heat pipe tube is designed to Φ25 × 410 mm, two wraps of 100 mesh screen, and filling mass of 15 g sodium. The height and thickness of the fins are 13 mm and 1 mm, and the gap distance between two fins is 5 mm. The wall material of the tube container and fins both are stainless steel. In order to compare the impact of the fins on the startup performance of the heat pipe, a plain-tube high-temperature heat pipe without fins which has the same dimensions is also comparatively experimented. The experimental results show that the finned heat pipe can start successfully and its end of condenser behaves bright red color, which is roughly in accordance with the results of the plain-tube heat pipe. The comparative results also show that the startup time of full startup and the temperature difference between evaporator and condenser after fully starting for the finned heat pipe and plain-tube heat pipe are similarly same. However, adding fins in condenser have a great effect on the temperature rise-rate during starting process and the quasi-steady or equilibrium temperature after startup between the results of two heat pipes.</p>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Frontier of Space Medicine: The Nexus of Bone Regeneration and Astronautic Health in Microgravity Conditions 探索太空医学的前沿:微重力条件下骨骼再生与宇航员健康的联系
IF 1.8 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-09-02 DOI: 10.1007/s12217-024-10136-6
Behnaz Banimohamad-Shotorbani, Arezou Azizsoltani, Zahra Khalaj, Maryam Rafiei-Baharloo, Armita Ghotaslou, Sonia Fathi-karkan

Microgravity, the near absence of gravity experienced in space, is a major health concern for astronauts, leading to significant bone loss. This weakens their skeletal system, impacting performance during missions and hindering post-mission rehabilitation. To address this challenge, this paper explores the potential of advanced cellular research and regenerative medicine for mitigating bone loss in astronauts. We analyze the biological mechanisms affecting bone turnover markers and their implications for space travel. By examining key studies on the effects of spaceflight on bone structure in rodents and humans, we highlight the complex relationship between bone density and the microgravity environment. While acknowledging limitations like limited spaceflight simulators and the early stage of extraterrestrial research facilities, we propose a strategic shift towards advanced cellular research specifically tailored to microgravity. This approach focuses on understanding how microgravity disrupts bone formation and resorption at the cellular level. Tailor-made cellular laboratories are crucial for this research. These specialized labs would simulate microgravity and incorporate advanced technology to study the behavior and function of bone-forming cells (osteoblasts) and stem cells under these conditions. By investigating cellular mechanisms and potential therapeutic targets, this research holds promise for developing novel bone regeneration strategies for astronauts. This could involve stimulating bone formation or promoting the activity of stem cells to repair and strengthen bones in space. The success of this approach relies on collaboration between clinical applications and molecular signaling research. It also underscores the need for a skilled team of scientist-astronauts to conduct in vivo bone regeneration research under microgravity conditions. This multifaceted approach has the potential to not only improve astronaut health and well-being, but also pave the way for a sustainable human presence in space. Furthermore, advancements in cellular therapies for bone health under microgravity could have applications on Earth for treating conditions like osteoporosis.

微重力(太空中几乎没有重力)是宇航员的主要健康问题,会导致骨质大量流失。这会削弱他们的骨骼系统,影响任务期间的表现并妨碍任务后的康复。为了应对这一挑战,本文探讨了先进的细胞研究和再生医学在减轻宇航员骨质流失方面的潜力。我们分析了影响骨转换标志物的生物机制及其对太空旅行的影响。通过研究太空飞行对啮齿动物和人类骨骼结构影响的主要研究,我们强调了骨密度与微重力环境之间的复杂关系。在承认有限的太空飞行模拟器和地外研究设施尚处于早期阶段等局限性的同时,我们建议向专门针对微重力的先进细胞研究进行战略转移。这种方法的重点是了解微重力如何在细胞水平上破坏骨形成和吸收。量身定制的细胞实验室对这项研究至关重要。这些专门的实验室将模拟微重力,并采用先进的技术来研究骨形成细胞(成骨细胞)和干细胞在这些条件下的行为和功能。通过研究细胞机制和潜在治疗目标,这项研究有望为宇航员开发出新型骨再生策略。这可能涉及刺激骨形成或促进干细胞的活性,以修复和强化太空中的骨骼。这种方法的成功有赖于临床应用和分子信号研究之间的合作。它还强调需要一支技术娴熟的科学家-宇航员团队,在微重力条件下开展体内骨再生研究。这种多方面的方法不仅有可能改善宇航员的健康和福祉,还能为人类在太空的可持续存在铺平道路。此外,在微重力条件下促进骨骼健康的细胞疗法取得的进展也可应用于地球上骨质疏松症等疾病的治疗。
{"title":"Exploring the Frontier of Space Medicine: The Nexus of Bone Regeneration and Astronautic Health in Microgravity Conditions","authors":"Behnaz Banimohamad-Shotorbani, Arezou Azizsoltani, Zahra Khalaj, Maryam Rafiei-Baharloo, Armita Ghotaslou, Sonia Fathi-karkan","doi":"10.1007/s12217-024-10136-6","DOIUrl":"https://doi.org/10.1007/s12217-024-10136-6","url":null,"abstract":"<p>Microgravity, the near absence of gravity experienced in space, is a major health concern for astronauts, leading to significant bone loss. This weakens their skeletal system, impacting performance during missions and hindering post-mission rehabilitation. To address this challenge, this paper explores the potential of advanced cellular research and regenerative medicine for mitigating bone loss in astronauts. We analyze the biological mechanisms affecting bone turnover markers and their implications for space travel. By examining key studies on the effects of spaceflight on bone structure in rodents and humans, we highlight the complex relationship between bone density and the microgravity environment. While acknowledging limitations like limited spaceflight simulators and the early stage of extraterrestrial research facilities, we propose a strategic shift towards advanced cellular research specifically tailored to microgravity. This approach focuses on understanding how microgravity disrupts bone formation and resorption at the cellular level. Tailor-made cellular laboratories are crucial for this research. These specialized labs would simulate microgravity and incorporate advanced technology to study the behavior and function of bone-forming cells (osteoblasts) and stem cells under these conditions. By investigating cellular mechanisms and potential therapeutic targets, this research holds promise for developing novel bone regeneration strategies for astronauts. This could involve stimulating bone formation or promoting the activity of stem cells to repair and strengthen bones in space. The success of this approach relies on collaboration between clinical applications and molecular signaling research. It also underscores the need for a skilled team of scientist-astronauts to conduct in vivo bone regeneration research under microgravity conditions. This multifaceted approach has the potential to not only improve astronaut health and well-being, but also pave the way for a sustainable human presence in space. Furthermore, advancements in cellular therapies for bone health under microgravity could have applications on Earth for treating conditions like osteoporosis.</p>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the instability of FC-72 vapor–liquid interface in a rectangular channel under different gravity conditions 不同重力条件下矩形通道中 FC-72 汽液界面的不稳定性研究
IF 1.8 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-08-22 DOI: 10.1007/s12217-024-10135-7
Leigang Zhang, Bo Xu, Zhenqian Chen, Guopei Li, Yonghai Zhang, Xuehong Wu

This paper investigates the instability of FC-72 vapor–liquid interface in a rectangular channel under different gravity conditions employing short-term microgravity experimental systems designed based on the drop tower platform. Visual observations and numerical simulations were conducted to monitor the behavior of vapor–liquid interface. The study reveals significant fluctuations, with liquid climbing along both sides of the channel after drop cabin releases. Higher initial liquid levels result in increased maximum liquid phase heights and decreased minimum values, with noticeable fluctuations. In microgravity, the maximum height gradually rises with significant fluctuations, while minimum height remains relatively stable. Increasing contact angle leads to reduced variation in maximum and minimum heights, with a distinctive upward slope of vapor–liquid interface observed at a 90° contact angle. The temporal evolution of vapor–liquid interface observed in simulations closely aligns with experimental findings. This study highlights the importance of considering various factors in designing experiments involving fluid systems with low surface tension, particularly in aerospace applications, and calls for further research to develop more sophisticated models and techniques for understanding and controlling vapor–liquid interface instability.

本文利用基于落塔平台设计的短期微重力实验系统,研究了不同重力条件下矩形通道中 FC-72 汽液界面的不稳定性。通过目视观察和数值模拟来监测汽液界面的行为。研究发现,液滴舱释放后,液体沿通道两侧攀升,波动明显。初始液面越高,液相最大高度越大,最小值越小,且波动明显。在微重力状态下,最大高度逐渐升高,波动明显,而最小高度保持相对稳定。接触角的增大导致最大高度和最小高度的变化减小,在接触角为 90° 时观察到汽液界面有明显的向上倾斜。模拟中观察到的汽液界面的时间演变与实验结果非常吻合。这项研究强调了在设计涉及低表面张力流体系统的实验时考虑各种因素的重要性,特别是在航空航天应用中,并呼吁进一步研究开发更复杂的模型和技术,以了解和控制汽液界面的不稳定性。
{"title":"Study on the instability of FC-72 vapor–liquid interface in a rectangular channel under different gravity conditions","authors":"Leigang Zhang, Bo Xu, Zhenqian Chen, Guopei Li, Yonghai Zhang, Xuehong Wu","doi":"10.1007/s12217-024-10135-7","DOIUrl":"https://doi.org/10.1007/s12217-024-10135-7","url":null,"abstract":"<p>This paper investigates the instability of FC-72 vapor–liquid interface in a rectangular channel under different gravity conditions employing short-term microgravity experimental systems designed based on the drop tower platform. Visual observations and numerical simulations were conducted to monitor the behavior of vapor–liquid interface. The study reveals significant fluctuations, with liquid climbing along both sides of the channel after drop cabin releases. Higher initial liquid levels result in increased maximum liquid phase heights and decreased minimum values, with noticeable fluctuations. In microgravity, the maximum height gradually rises with significant fluctuations, while minimum height remains relatively stable. Increasing contact angle leads to reduced variation in maximum and minimum heights, with a distinctive upward slope of vapor–liquid interface observed at a 90° contact angle. The temporal evolution of vapor–liquid interface observed in simulations closely aligns with experimental findings. This study highlights the importance of considering various factors in designing experiments involving fluid systems with low surface tension, particularly in aerospace applications, and calls for further research to develop more sophisticated models and techniques for understanding and controlling vapor–liquid interface instability.</p>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical Analysis of the Effects of the Porosity Distribution on Liquid–Water Management in the Cathode of a Polymer Electrolyte Membrane Fuel Cell 多孔分布对聚合物电解质膜燃料电池阴极液水管理影响的分析
IF 1.8 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-08-19 DOI: 10.1007/s12217-024-10134-8
Faycel Khemili, Mustapha Najjari

Proton Exchange Membrane Fuel Cell (PEMFC) technology has been receiving more attention recently and can play a more expanded role in space missions with low gravity or microgravity. The liquid water generation in the Gas Diffusion Layer (GDL) of a Proton Exchange Membrane Fuel Cell (PEMFC) increases the resistance to oxygen flow toward the catalyst layer. Water flooding inside the GDL can affect the PEMFC performance especially at higher current densities. Therefore, a good understanding of the effect of liquid water amount in the GDL is crucial to water management and, subsequently, to the performance of the fuel cell. The purpose of the present study is to investigate the effect of the microstructure characteristics of the GDL on the water flooding and liquid water distribution inside the GDL. A one-dimensional theoretical model has been developed. Results indicate that the porosity gradient has a significant effect on the liquid water saturation and the performance of the PEM fuel cell.

质子交换膜燃料电池(PEMFC)技术最近受到越来越多的关注,在低重力或微重力的太空任务中可以发挥更大的作用。质子交换膜燃料电池(PEMFC)的气体扩散层(GDL)中产生的液态水增加了氧气流向催化剂层的阻力。GDL 内的水浸会影响 PEMFC 的性能,尤其是在电流密度较高的情况下。因此,充分了解 GDL 中液态水量的影响对于水管理以及燃料电池的性能至关重要。本研究旨在探讨 GDL 的微观结构特征对 GDL 内部水浸和液态水分布的影响。研究建立了一个一维理论模型。结果表明,孔隙率梯度对液态水饱和度和 PEM 燃料电池的性能有显著影响。
{"title":"Analytical Analysis of the Effects of the Porosity Distribution on Liquid–Water Management in the Cathode of a Polymer Electrolyte Membrane Fuel Cell","authors":"Faycel Khemili, Mustapha Najjari","doi":"10.1007/s12217-024-10134-8","DOIUrl":"https://doi.org/10.1007/s12217-024-10134-8","url":null,"abstract":"<p>Proton Exchange Membrane Fuel Cell (PEMFC) technology has been receiving more attention recently and can play a more expanded role in space missions with low gravity or microgravity. The liquid water generation in the Gas Diffusion Layer (GDL) of a Proton Exchange Membrane Fuel Cell (PEMFC) increases the resistance to oxygen flow toward the catalyst layer. Water flooding inside the GDL can affect the PEMFC performance especially at higher current densities. Therefore, a good understanding of the effect of liquid water amount in the GDL is crucial to water management and, subsequently, to the performance of the fuel cell. The purpose of the present study is to investigate the effect of the microstructure characteristics of the GDL on the water flooding and liquid water distribution inside the GDL. A one-dimensional theoretical model has been developed. Results indicate that the porosity gradient has a significant effect on the liquid water saturation and the performance of the PEM fuel cell.</p>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Enhanced Heat Transfer in a Ventilated Cavity through Thermal Vibration-Induced Convection: Under Microgravity and Terrestrial Conditions 探索通过热振动诱导对流增强通风空腔中的传热:微重力和地面条件下
IF 1.8 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-08-16 DOI: 10.1007/s12217-024-10132-w
V. Navaneethakrishnan, M. Muthtamilselvan

An integration of both passive and active techniques to enhance the heat exchange has emerged as a promising research area over the past few decades. Our present investigation focuses on the heat exchange due to thermal convection in a square cavity driven by a channel, utilizing ternary hybrid nanofluid. The governing equations were derived from the averaged formulations describing thermal vibrational convection, illustrated using the vorticity of the mean velocity and stream functions relevant to both the mean and fluctuating flows. The influence of vibration on the system is quantified using a dimensionless vibration factor, denoted as Gershuni number (Gs), which is proportional to the ratio of the mean vibrational buoyancy force to the product of momentum and thermal diffusivities. All computations were conducted with fixed values of the Prandtl number (Pr = 6.1) and Reynolds number (Re = 100). The influence of physical parameters, including the Grashof number ((10^3 le Gr le 10^6) ), Gershuni number ((10^3 le Gs le 10^6)), and volume fraction of nanomaterials ((0% le Phi le 4%)), particularly under two scenarios: microgravity ((Gr= 0)) and terrestrial conditions, on the streamlines for both the mean and fluctuating flows, isotherms, and mean Nusselt number are discussed graphically. Numerical results indicate that an increase of Grashof number boosts heat exchange by 250% under buoyancy effects. Elevating nanomaterial volume fractions enhances thermal conductivity, increasing heat exchange by 30%. However, heightened thermal vibration reduces heat exchange.

在过去几十年中,将被动和主动技术相结合以增强热交换已成为一个前景广阔的研究领域。我们目前的研究重点是利用三元混合纳米流体,研究由通道驱动的方形空腔中热对流引起的热交换。治理方程由描述热振动对流的平均公式导出,并使用平均速度的涡度以及与平均流和波动流相关的流函数进行说明。振动对系统的影响通过一个无量纲振动因子(表示为格舒尼数(Gs))来量化,该因子与平均振动浮力与动量和热扩散乘积之比成正比。所有计算都是在普朗特数(Pr = 6.1)和雷诺数(Re = 100)固定值的情况下进行的。物理参数的影响包括格拉肖夫数((10^3 le Gr le 10^6))、格舒尼数((10^3 le Gs le 10^6))和纳米材料的体积分数((0% le Phi le 4%)),特别是在两种情况下:图解讨论了微重力((Gr= 0) )和陆地条件对平均流和波动流的流线、等温线和平均努塞尔特数的影响。数值结果表明,在浮力效应下,格拉肖夫数的增加可将热交换提高 250%。提高纳米材料的体积分数可增强导热性,使热交换增加 30%。然而,热振动的增加会降低热交换。
{"title":"Exploring Enhanced Heat Transfer in a Ventilated Cavity through Thermal Vibration-Induced Convection: Under Microgravity and Terrestrial Conditions","authors":"V. Navaneethakrishnan, M. Muthtamilselvan","doi":"10.1007/s12217-024-10132-w","DOIUrl":"https://doi.org/10.1007/s12217-024-10132-w","url":null,"abstract":"<p>An integration of both passive and active techniques to enhance the heat exchange has emerged as a promising research area over the past few decades. Our present investigation focuses on the heat exchange due to thermal convection in a square cavity driven by a channel, utilizing ternary hybrid nanofluid. The governing equations were derived from the averaged formulations describing thermal vibrational convection, illustrated using the vorticity of the mean velocity and stream functions relevant to both the mean and fluctuating flows. The influence of vibration on the system is quantified using a dimensionless vibration factor, denoted as Gershuni number (Gs), which is proportional to the ratio of the mean vibrational buoyancy force to the product of momentum and thermal diffusivities. All computations were conducted with fixed values of the Prandtl number (Pr = 6.1) and Reynolds number (Re = 100). The influence of physical parameters, including the Grashof number (<span>(10^3 le Gr le 10^6)</span> ), Gershuni number (<span>(10^3 le Gs le 10^6)</span>), and volume fraction of nanomaterials (<span>(0% le Phi le 4%)</span>), particularly under two scenarios: microgravity (<span>(Gr= 0)</span>) and terrestrial conditions, on the streamlines for both the mean and fluctuating flows, isotherms, and mean Nusselt number are discussed graphically. Numerical results indicate that an increase of Grashof number boosts heat exchange by 250% under buoyancy effects. Elevating nanomaterial volume fractions enhances thermal conductivity, increasing heat exchange by 30%. However, heightened thermal vibration reduces heat exchange.</p>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Simulated Microgravity on Artificial Single Cell Membrane Mechanics 模拟微重力对人工单细胞膜力学的影响
IF 1.8 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-08-13 DOI: 10.1007/s12217-024-10133-9
R. G. Asuwin Prabu, Anagha Manohar, S. Narendran, Anisha Kabir, Swathi Sudhakar

The study of cell membrane structures under microgravity is crucial for understanding the inherent physiological and adaptive mechanisms relevant to overcoming challenges in human space travel and gaining deeper insight into the membrane-protein interactions at reduced gravity. However, the membrane dynamics under microgravity conditions is not unraveled yet. Moreover, the complexity of cells poses significant challenges when investigating the effects of microgravity on individual components, including cell membranes. Giant Unilamellar Vesicles (GUVs) serve as valuable cell-mimicking models and act as artificial cells, providing insights into the biophysics of membrane architecture. Herein, we have elucidated the membrane dynamics of artificial cells under simulated microgravity conditions. GUVs were synthesized in the size range of 20 ± 2.1 μm and their morphological changes were examined under simulated microgravity conditions using a random positioning machine. We observed that the well-defined spherical GUVs were transfigured and deformed into elongated structures under microgravity conditions. The membrane fluidity of GUVs increased sevenfold under microgravity conditions compared to GUVs under normal gravity conditions at 48 h. It is also noted that there is a reduction in the membrane microviscosity. The study sheds light on the membrane mechanics under microgravity conditions and contributes valuable insights to the broader understanding of membrane responses to microgravity and its implications for space exploration and biomedical applications.

研究微重力条件下的细胞膜结构对于了解与克服人类太空旅行挑战相关的内在生理和适应机制以及深入了解重力降低条件下的膜蛋白相互作用至关重要。然而,微重力条件下的膜动力学尚未被揭示。此外,细胞的复杂性给研究微重力对包括细胞膜在内的单个成分的影响带来了巨大挑战。巨型单拉美拉尔泡(GUVs)是一种有价值的细胞模拟模型,可充当人造细胞,为研究膜结构的生物物理学提供见解。在这里,我们阐明了人造细胞在模拟微重力条件下的膜动力学。我们合成了尺寸范围为 20 ± 2.1 μm 的 GUV,并使用随机定位机在模拟微重力条件下检测了它们的形态变化。我们观察到,在微重力条件下,轮廓分明的球形 GUV 发生了变形,变成了拉长的结构。与正常重力条件下的 GUV 相比,微重力条件下 GUV 的膜流动性在 48 小时内增加了七倍。该研究揭示了微重力条件下的膜力学,为更广泛地了解膜对微重力的反应及其对太空探索和生物医学应用的影响提供了宝贵的见解。
{"title":"Effect of Simulated Microgravity on Artificial Single Cell Membrane Mechanics","authors":"R. G. Asuwin Prabu, Anagha Manohar, S. Narendran, Anisha Kabir, Swathi Sudhakar","doi":"10.1007/s12217-024-10133-9","DOIUrl":"https://doi.org/10.1007/s12217-024-10133-9","url":null,"abstract":"<p>The study of cell membrane structures under microgravity is crucial for understanding the inherent physiological and adaptive mechanisms relevant to overcoming challenges in human space travel and gaining deeper insight into the membrane-protein interactions at reduced gravity. However, the membrane dynamics under microgravity conditions is not unraveled yet. Moreover, the complexity of cells poses significant challenges when investigating the effects of microgravity on individual components, including cell membranes. Giant Unilamellar Vesicles (GUVs) serve as valuable cell-mimicking models and act as artificial cells, providing insights into the biophysics of membrane architecture. Herein, we have elucidated the membrane dynamics of artificial cells under simulated microgravity conditions. GUVs were synthesized in the size range of 20 <i>±</i> 2.1 μm and their morphological changes were examined under simulated microgravity conditions using a random positioning machine. We observed that the well-defined spherical GUVs were transfigured and deformed into elongated structures under microgravity conditions. The membrane fluidity of GUVs increased sevenfold under microgravity conditions compared to GUVs under normal gravity conditions at 48 h. It is also noted that there is a reduction in the membrane microviscosity. The study sheds light on the membrane mechanics under microgravity conditions and contributes valuable insights to the broader understanding of membrane responses to microgravity and its implications for space exploration and biomedical applications.</p>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Microgravity on Cerebrovascular Complications: Exploring Molecular Manifestation and Promising Countermeasures 微重力对脑血管并发症的影响:探索分子表现和可行对策
IF 1.8 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-08-07 DOI: 10.1007/s12217-024-10131-x
Pankaj Neje, Brijesh Taksande, Milind Umekar, Shubhada Mangrulkar

With NASA and other space agencies planning for longer-duration spaceflights, such as missions to Mars, and the rise in space tourism, it is crucial to comprehend the impact of the space environment on human health. However, there is a lack of information on how spaceflight impacts cerebrovascular health. The absence of gravitational force negatively affected various physiological functions in astronauts, especially posing risks to the cerebrovascular system. Exposure to microgravity leads to fluid changes that impact cardiac function, arterial pressure, and cerebrovascular structural changes that may be the cause of cognitive impairment. Numerous experiments have simulated microgravity to study the damage caused by prolonged spaceflight and reported similar findings. Understanding the effect of simulated microgravity on cerebrovascular structure and function has important implications for cerebrovascular health on Earth and in space. Simulated microgravity has been shown to induce endothelial dysfunction, altering nitric oxide (NO) synthesis pathways and increasing oxidative stress. Dysregulation of the Renin-Angiotensin system, NADPH oxidases, K+ Channels, and L-type Ca2+ Channels contributes to vascular dysfunction, while mitochondrial complexes expression and Ca2+ concentration exacerbate oxidative stress. This knowledge is essential for creating effective countermeasures to protect astronaut health during extended space missions. Therapeutic interventions targeting mitochondrial ROS and NADPH oxidases showed promise in mitigating these effects. This review article delves into the significant challenges posed by extended spaceflight, focusing on the cerebrovascular systems. It also provides a comprehensive understanding of molecular mechanisms associated with microgravity-induced cerebrovascular dysfunction and potential therapeutic interventions, paving the way for safer and more effective space travel.

Graphical Abstract

随着美国国家航空航天局(NASA)和其他太空机构计划进行更长时间的太空飞行,如火星任务,以及太空旅游的兴起,了解太空环境对人类健康的影响至关重要。然而,目前还缺乏有关太空飞行如何影响脑血管健康的信息。缺乏重力会对宇航员的各种生理功能产生负面影响,尤其是对脑血管系统构成风险。暴露在微重力环境中会导致体液变化,从而影响心脏功能、动脉压力和脑血管结构变化,而这些变化可能是导致认知障碍的原因。许多实验模拟微重力来研究长期太空飞行造成的损害,并报告了类似的发现。了解模拟微重力对脑血管结构和功能的影响对地球和太空中的脑血管健康具有重要意义。模拟微重力已被证明会诱发内皮功能障碍,改变一氧化氮(NO)合成途径并增加氧化应激。肾素-血管紧张素系统、NADPH 氧化酶、K+ 通道和 L 型 Ca2+ 通道的失调会导致血管功能障碍,而线粒体复合物的表达和 Ca2+ 浓度会加剧氧化应激。这些知识对于制定有效对策以保护宇航员在长期太空任务中的健康至关重要。针对线粒体 ROS 和 NADPH 氧化酶的治疗干预有望减轻这些影响。这篇综述文章深入探讨了长时间太空飞行带来的重大挑战,重点关注脑血管系统。文章还全面介绍了与微重力引起的脑血管功能障碍相关的分子机制和潜在的治疗干预措施,为更安全、更有效的太空旅行铺平了道路。
{"title":"Influence of Microgravity on Cerebrovascular Complications: Exploring Molecular Manifestation and Promising Countermeasures","authors":"Pankaj Neje, Brijesh Taksande, Milind Umekar, Shubhada Mangrulkar","doi":"10.1007/s12217-024-10131-x","DOIUrl":"https://doi.org/10.1007/s12217-024-10131-x","url":null,"abstract":"<p>With NASA and other space agencies planning for longer-duration spaceflights, such as missions to Mars, and the rise in space tourism, it is crucial to comprehend the impact of the space environment on human health. However, there is a lack of information on how spaceflight impacts cerebrovascular health. The absence of gravitational force negatively affected various physiological functions in astronauts, especially posing risks to the cerebrovascular system. Exposure to microgravity leads to fluid changes that impact cardiac function, arterial pressure, and cerebrovascular structural changes that may be the cause of cognitive impairment. Numerous experiments have simulated microgravity to study the damage caused by prolonged spaceflight and reported similar findings. Understanding the effect of simulated microgravity on cerebrovascular structure and function has important implications for cerebrovascular health on Earth and in space. Simulated microgravity has been shown to induce endothelial dysfunction, altering nitric oxide (NO) synthesis pathways and increasing oxidative stress. Dysregulation of the Renin-Angiotensin system, NADPH oxidases, K<sup>+</sup> Channels, and L-type Ca<sup>2+</sup> Channels contributes to vascular dysfunction, while mitochondrial complexes expression and Ca<sup>2+</sup> concentration exacerbate oxidative stress. This knowledge is essential for creating effective countermeasures to protect astronaut health during extended space missions. Therapeutic interventions targeting mitochondrial ROS and NADPH oxidases showed promise in mitigating these effects. This review article delves into the significant challenges posed by extended spaceflight, focusing on the cerebrovascular systems. It also provides a comprehensive understanding of molecular mechanisms associated with microgravity-induced cerebrovascular dysfunction and potential therapeutic interventions, paving the way for safer and more effective space travel.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Heat Flux and Bubble Dynamics on Mixed Wetting Surfaces 混合润湿表面上的临界热通量和气泡动力学
IF 1.8 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-07-17 DOI: 10.1007/s12217-024-10130-y
Xueli Wang, Quan Gao, Pengju Zhang, Jianfu Zhao, Na Xu, Yonghai Zhang

To study the effect of micro-structured surface with wedge-shaped channel on pool boiling heat transfer performance of FC-72, four kinds of mixed wettability surfaces with area ratio of the micro-pillar region to the smooth channel region of approximately 1:1 were fabricated in this study (the surfaces were denoted as the Multi tip surface, Multi star surface, Less tip surface and Less star surface). The experimental results indicated that the CHF increases with the increase of liquid subcooling. The structural surface parameters will affect the bubble dynamics behavior and thus affect CHF. The effect of capillary wick suction on the mixed wetting surface first increases and then decreases. The capillary wick suction plays a significant role in the increase of CHF, and the capillary wick force on the Less tip surface with the best heat transfer performance is the largest. The Zuber model is modified by combining three factors to propose a critical heat flux model suitable for mixed wetting surfaces. With the increase of heat flux, the bubble detachment frequency decreases, the bubble detachment diameter increases and the nucleation site density basically shows exponential growth. Bubbles in the micro-pillar array region will be driven to slip onto the smooth channel due to energy difference and the bubbles in smooth channels will also migrate in the direction of wider smooth channels under the action of Laplace force.

为了研究带有楔形通道的微结构表面对 FC-72 的池沸腾传热性能的影响,本研究制作了四种混合润湿表面,微柱区与光滑通道区的面积比约为 1:1(分别为多尖表面、多星表面、少尖表面和少星表面)。实验结果表明,CHF 随液体过冷度的增加而增加。结构表面参数会影响气泡动力学行为,从而影响 CHF。毛细管吸力对混合润湿表面的影响先增大后减小。毛细管吸力对 CHF 的增加起着重要作用,传热性能最好的 Less tip 表面上的毛细管吸力最大。结合三个因素对 Zuber 模型进行了修正,提出了适合混合润湿表面的临界热通量模型。随着热通量的增加,气泡脱落频率降低,气泡脱落直径增大,成核点密度基本呈指数增长。在拉普拉斯力的作用下,微柱阵列区域的气泡会因能量差而滑向光滑通道,光滑通道中的气泡也会向更宽的光滑通道方向迁移。
{"title":"Critical Heat Flux and Bubble Dynamics on Mixed Wetting Surfaces","authors":"Xueli Wang, Quan Gao, Pengju Zhang, Jianfu Zhao, Na Xu, Yonghai Zhang","doi":"10.1007/s12217-024-10130-y","DOIUrl":"https://doi.org/10.1007/s12217-024-10130-y","url":null,"abstract":"<p>To study the effect of micro-structured surface with wedge-shaped channel on pool boiling heat transfer performance of FC-72, four kinds of mixed wettability surfaces with area ratio of the micro-pillar region to the smooth channel region of approximately 1:1 were fabricated in this study (the surfaces were denoted as the Multi tip surface, Multi star surface, Less tip surface and Less star surface). The experimental results indicated that the CHF increases with the increase of liquid subcooling. The structural surface parameters will affect the bubble dynamics behavior and thus affect CHF. The effect of capillary wick suction on the mixed wetting surface first increases and then decreases. The capillary wick suction plays a significant role in the increase of CHF, and the capillary wick force on the Less tip surface with the best heat transfer performance is the largest. The Zuber model is modified by combining three factors to propose a critical heat flux model suitable for mixed wetting surfaces. With the increase of heat flux, the bubble detachment frequency decreases, the bubble detachment diameter increases and the nucleation site density basically shows exponential growth. Bubbles in the micro-pillar array region will be driven to slip onto the smooth channel due to energy difference and the bubbles in smooth channels will also migrate in the direction of wider smooth channels under the action of Laplace force.</p>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microgravity Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1