{"title":"Iron binding ligands in the catalytic site of protocatechuate 3,4-dioxygenase","authors":"Ching T. Hou","doi":"10.1016/S0006-3061(00)80199-4","DOIUrl":null,"url":null,"abstract":"<div><p>The tryptophan fluorescence maximum for holoprotocatechuate 3,4-dioxygenase(holo PCD) is blue-shifted slightly (3 nm) from that of the apoenzyme. In the preparation of apoenzyme, increases in tryptophan fluorescence intensity coincided with decreases in enzyme activity and decreases in iron content. The tryptophan emission intensity of reconstituted enzyme having full enzyme activity was about 90% of that of the holoenzyme. Although apo PCD has similar molecular weight, amino acid content and essentially the same gross quaternary conformation as holo PCD, the absence of iron in apo PCD causes the changes in emission intensity of tryptophan. Findings indicate that some tryptophan residues may be (or may be near) the iron-binding ligands in the catalytic site of protocatechuate 3,4-dioxygenase.</p></div>","PeriodicalId":9177,"journal":{"name":"Bioinorganic chemistry","volume":"8 3","pages":"Pages 255-265"},"PeriodicalIF":0.0000,"publicationDate":"1978-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0006-3061(00)80199-4","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinorganic chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006306100801994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The tryptophan fluorescence maximum for holoprotocatechuate 3,4-dioxygenase(holo PCD) is blue-shifted slightly (3 nm) from that of the apoenzyme. In the preparation of apoenzyme, increases in tryptophan fluorescence intensity coincided with decreases in enzyme activity and decreases in iron content. The tryptophan emission intensity of reconstituted enzyme having full enzyme activity was about 90% of that of the holoenzyme. Although apo PCD has similar molecular weight, amino acid content and essentially the same gross quaternary conformation as holo PCD, the absence of iron in apo PCD causes the changes in emission intensity of tryptophan. Findings indicate that some tryptophan residues may be (or may be near) the iron-binding ligands in the catalytic site of protocatechuate 3,4-dioxygenase.