Active vibration control of a monopile offshore structure

S. Nielsen, P. H. Kirkegaard, L. Thesbjerg
{"title":"Active vibration control of a monopile offshore structure","authors":"S. Nielsen, P. H. Kirkegaard, L. Thesbjerg","doi":"10.1002/STC.4300060203","DOIUrl":null,"url":null,"abstract":"In the Danish part of the North Sea monopile platforms with a cylindrical shaft have been used at the exploitation of marginal fields. In the paper a new principle for active vibration control of such structures is suggested. The principle is based on a control of the boundary layer flow around the cylinder of the platform, so the drag force in the generalized Morison equation is increased whenever it is acting in the opposite direction of the cylinder motion, whereas an unchanged drag force is applied, whenever it is acting co-directionally to the cylinder motion. The inertial force of the wave load is not subjected to control. The increased drag force is obtained by forcing the boundary layers to separate by blowing air into the boundary layer from the inside through small holes in the cylinder surface placed at a relatively large distance from the water surface. The control is specified by the sign of the fluid velocity relative to the platform, and only this quantity need to be measured, which is easily performed by a flow meter fixed to the platform. The efficiency of the described closed loop control system has been verified by model tests in a wave flume in both regular and irregular wave conditions, where reductions in the vibration level of up to 50% have been registered.","PeriodicalId":135735,"journal":{"name":"Journal of Structural Control","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/STC.4300060203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the Danish part of the North Sea monopile platforms with a cylindrical shaft have been used at the exploitation of marginal fields. In the paper a new principle for active vibration control of such structures is suggested. The principle is based on a control of the boundary layer flow around the cylinder of the platform, so the drag force in the generalized Morison equation is increased whenever it is acting in the opposite direction of the cylinder motion, whereas an unchanged drag force is applied, whenever it is acting co-directionally to the cylinder motion. The inertial force of the wave load is not subjected to control. The increased drag force is obtained by forcing the boundary layers to separate by blowing air into the boundary layer from the inside through small holes in the cylinder surface placed at a relatively large distance from the water surface. The control is specified by the sign of the fluid velocity relative to the platform, and only this quantity need to be measured, which is easily performed by a flow meter fixed to the platform. The efficiency of the described closed loop control system has been verified by model tests in a wave flume in both regular and irregular wave conditions, where reductions in the vibration level of up to 50% have been registered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海上单桩结构的主动振动控制
在北海的丹麦部分,具有圆柱形轴的单桩平台已用于边缘油田的开采。本文提出了一种新的结构振动主动控制原理。该原理是基于对平台圆柱体周围边界层流动的控制,因此广义Morison方程中的阻力在与圆柱体运动方向相反的情况下增加,而在与圆柱体运动方向相同的情况下,施加不变的阻力。波浪荷载的惯性力不受控制。增加的阻力是通过在离水面较远的圆柱体表面设置小孔,将空气从内部吹入边界层,迫使边界层分离而获得的。控制是由相对于平台的流体速度符号指定的,并且只需要测量这个量,这很容易通过固定在平台上的流量计来实现。所述闭环控制系统的效率已通过波浪水槽在规则和不规则波浪条件下的模型试验得到验证,其中振动水平降低高达50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Active vibration control of a monopile offshore structure The static electromechanical coupling factor in linear piezoelectric material Input-signal characterization for shaking-tables Experimental study of active control using neural networks Nonlinear decentralized active tendon control of cable-stayed bridges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1