Drain current modelling of double gate-all-around (DGAA) MOSFETs

Arun Kumar, S. Bhushan, P. Tiwari
{"title":"Drain current modelling of double gate-all-around (DGAA) MOSFETs","authors":"Arun Kumar, S. Bhushan, P. Tiwari","doi":"10.1049/IET-CDS.2018.5201","DOIUrl":null,"url":null,"abstract":"Here, an analytical modelling of drain current is presented for double gate-all-around (DGAA) MOSFETs. A common feature in all the multi-gate (MG) MOSFETs is that the channel charge in the sub-threshold regime is proportional to the channel cross-sectional area; whereas, the inversion charges above threshold locate near the Si/SiO2 interfaces and are proportional to the total gated perimeter of the channel body. This distinctive feature introduces the notion of equivalent charge and has been widely used to model the drain current of any arbitrary non-classical MOSFET architecture. The authors have extended the aforementioned quasi-approach to model the drain current of DGAA MOSFET. The total gated perimeter of DGAA MOSFET is mapped by the gated perimeter of two GAA MOSFETs with different radii for the calculation of surface inversion charges above threshold. The currents obtained from two GAA MOSFETs are summed up to obtain the current of DGAA MOSFET. I–V characteristics and transconductance of the device for various physical parameters are compared and analysed with the numerical simulation results obtained from Visual-TCAD of Cogenda Int.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-CDS.2018.5201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Here, an analytical modelling of drain current is presented for double gate-all-around (DGAA) MOSFETs. A common feature in all the multi-gate (MG) MOSFETs is that the channel charge in the sub-threshold regime is proportional to the channel cross-sectional area; whereas, the inversion charges above threshold locate near the Si/SiO2 interfaces and are proportional to the total gated perimeter of the channel body. This distinctive feature introduces the notion of equivalent charge and has been widely used to model the drain current of any arbitrary non-classical MOSFET architecture. The authors have extended the aforementioned quasi-approach to model the drain current of DGAA MOSFET. The total gated perimeter of DGAA MOSFET is mapped by the gated perimeter of two GAA MOSFETs with different radii for the calculation of surface inversion charges above threshold. The currents obtained from two GAA MOSFETs are summed up to obtain the current of DGAA MOSFET. I–V characteristics and transconductance of the device for various physical parameters are compared and analysed with the numerical simulation results obtained from Visual-TCAD of Cogenda Int.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双栅全能(DGAA) mosfet漏极电流建模
本文提出了双栅全功率(DGAA) mosfet漏极电流的解析模型。所有多栅(MG) mosfet的一个共同特征是,亚阈值区域的通道电荷与通道横截面积成正比;而高于阈值的反转电荷位于Si/SiO2界面附近,且与通道体的总门控周长成正比。这种独特的特性引入了等效电荷的概念,并被广泛用于模拟任意非经典MOSFET结构的漏极电流。作者扩展了上述的准方法来模拟DGAA MOSFET的漏极电流。DGAA MOSFET的总门控周长由两个半径不同的GAA MOSFET的门控周长映射,用于计算阈值以上表面反转电荷。将两个GAA MOSFET的电流相加得到DGAA MOSFET的电流。对比分析了不同物理参数下器件的I-V特性和跨导特性,并与Cogenda Int公司Visual-TCAD的数值模拟结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low-offset low-power and high-speed dynamic latch comparator with a preamplifier-enhanced stage Embedding delay-based physical unclonable functions in networks-on-chip Design of 10T SRAM cell with improved read performance and expanded write margin On the applicability of two-bit carbon nanotube through-silicon via for power distribution networks in 3-D integrated circuits Analytical model and simulation-based analysis of a work function engineered triple metal tunnel field-effect transistor device showing excellent device performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1