Asymptotic and Qualitative Performance of Non-Parametric Density Estimators: A Comparative Study

Teruko Takada
{"title":"Asymptotic and Qualitative Performance of Non-Parametric Density Estimators: A Comparative Study","authors":"Teruko Takada","doi":"10.1111/j.1368-423X.2008.00249.x","DOIUrl":null,"url":null,"abstract":"Motivated by finance applications, we assessed the performance of several univariate density estimation methods, focusing on their ability to deal with heavy-tailed target densities. Four approaches, a fixed bandwidth kernel estimator, an adaptive bandwidth kernel estimator, the Hermite series (SNP) estimator of Gallant and Nychka, and the logspline estimator of Kooperberg and Stone, are compared. We conclude that the logspline and adaptive kernel methods provide superior performance, and the convergence rate of the SNP estimator is remarkably slow compared with the other methods. The Hellinger convergence rate of the SNP estimator is derived as a function of tail heaviness. These findings are confirmed in Monte Carlo experiments. Qualitative assessment reveals the possibility that side lobes in the tails of the fixed kernel and SNP estimates are artefacts of the fitting method. Copyright The Author(s). Journal compilation Royal Economic Society 2008","PeriodicalId":175689,"journal":{"name":"Wiley-Blackwell: Econometrics Journal","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley-Blackwell: Econometrics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1368-423X.2008.00249.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Motivated by finance applications, we assessed the performance of several univariate density estimation methods, focusing on their ability to deal with heavy-tailed target densities. Four approaches, a fixed bandwidth kernel estimator, an adaptive bandwidth kernel estimator, the Hermite series (SNP) estimator of Gallant and Nychka, and the logspline estimator of Kooperberg and Stone, are compared. We conclude that the logspline and adaptive kernel methods provide superior performance, and the convergence rate of the SNP estimator is remarkably slow compared with the other methods. The Hellinger convergence rate of the SNP estimator is derived as a function of tail heaviness. These findings are confirmed in Monte Carlo experiments. Qualitative assessment reveals the possibility that side lobes in the tails of the fixed kernel and SNP estimates are artefacts of the fitting method. Copyright The Author(s). Journal compilation Royal Economic Society 2008
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非参数密度估计的渐近性能和定性性能:比较研究
受金融应用的影响,我们评估了几种单变量密度估计方法的性能,重点关注它们处理重尾目标密度的能力。比较了固定带宽核估计器、自适应带宽核估计器、Gallant和Nychka的Hermite级数估计器以及Kooperberg和Stone的对数样条估计器四种方法。结果表明,对数样条和自适应核方法具有较好的性能,但SNP估计器的收敛速度明显慢于其他方法。推导了SNP估计器的Hellinger收敛率作为尾重的函数。这些发现在蒙特卡洛实验中得到了证实。定性评估揭示了固定核和SNP估计尾部的侧叶可能是拟合方法的伪影。版权归作者所有。期刊汇编皇家经济学会2008
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heteroscedasticity�?Robust C Model Averaging Bayesian Estimation of a Random Effects Heteroscedastic Probit Model Panel Vector Autoregression Under Cross-Sectional Dependence Asymptotic and Qualitative Performance of Non-Parametric Density Estimators: A Comparative Study Expectations Hypotheses Tests at Long Horizons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1