{"title":"Modeling Movement of Gas-Static Bearings","authors":"V. Kodnyanko","doi":"10.24108/0119.0001450","DOIUrl":null,"url":null,"abstract":"The competitiveness of gas-static sliding bearings, which are assemblies of cutting-edge machines, in particular, precision metal-cutting machines, largely depends on their creation rapidity, which is determined by their mobility of modeling and quality of theoretical study for the later use in designing constructions. The objective is to develop a computer-aided mobile modeling technology for designing the gas-static bearings, which enables quick calculation and study of their static characteristics, quality criteria for their dynamics, and drawing-up recommendations for rapid designing of bearings to ensure performance characteristics and appropriate dynamics quality of designs through automation of procedures, their mathematical modeling, and theoretical study. As a result, there has been developed a technology concept for modeling of gas-static bearings and numerical methods, which allow us to find a solution for exploring tasks with a desirable accuracy. Based on the approximate and proposed numerical methods, the developed modeling technology rapidity was studied, and high comparative efficiency of this technology was found. Practical relevance of technology lies in significant acceleration of modeling processes, calculation and study of static and dynamic characteristics of gas-static bearings that is provided by application of developed methods, algorithms, and modeling technology. There are also reducing the complexity of research processes, and the capability for quick learning of complex bearing structures rapid exploration of which is hard or inconceivable using the traditional “manual” technology.","PeriodicalId":166201,"journal":{"name":"Mechanical Engineering and Computer Science","volume":"109 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24108/0119.0001450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The competitiveness of gas-static sliding bearings, which are assemblies of cutting-edge machines, in particular, precision metal-cutting machines, largely depends on their creation rapidity, which is determined by their mobility of modeling and quality of theoretical study for the later use in designing constructions. The objective is to develop a computer-aided mobile modeling technology for designing the gas-static bearings, which enables quick calculation and study of their static characteristics, quality criteria for their dynamics, and drawing-up recommendations for rapid designing of bearings to ensure performance characteristics and appropriate dynamics quality of designs through automation of procedures, their mathematical modeling, and theoretical study. As a result, there has been developed a technology concept for modeling of gas-static bearings and numerical methods, which allow us to find a solution for exploring tasks with a desirable accuracy. Based on the approximate and proposed numerical methods, the developed modeling technology rapidity was studied, and high comparative efficiency of this technology was found. Practical relevance of technology lies in significant acceleration of modeling processes, calculation and study of static and dynamic characteristics of gas-static bearings that is provided by application of developed methods, algorithms, and modeling technology. There are also reducing the complexity of research processes, and the capability for quick learning of complex bearing structures rapid exploration of which is hard or inconceivable using the traditional “manual” technology.