Using Convolutional Neural Networks for Automated Fine Grained Image Classification of Acute Lymphoblastic Leukemia

Richard K. Sipes, Dan Li
{"title":"Using Convolutional Neural Networks for Automated Fine Grained Image Classification of Acute Lymphoblastic Leukemia","authors":"Richard K. Sipes, Dan Li","doi":"10.1109/ICCIA.2018.00036","DOIUrl":null,"url":null,"abstract":"Acute lymphoblastic leukemia can be diagnosed through a series of tests which include the minimally invasive microscopic examination of a stained peripheral blood smear. Manual microscopy is a slow process with variable accuracy depending on the laboratorian's skill level. Thus automating microscopy is a goal in cell biology. Current methods involve hand-selecting features from cell images as inputs to a variety of standard machine learning classifiers. Underrepresented in this filed, yet successful in practice, is the convolutional neural network that learns features from fine-grained images. This paper compares the performance of a convolutional neural network model with other models to determine the validity of using whole cell images rather than hand-selected features for acute lymphoblastic leukemia classification.","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"41 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA.2018.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Acute lymphoblastic leukemia can be diagnosed through a series of tests which include the minimally invasive microscopic examination of a stained peripheral blood smear. Manual microscopy is a slow process with variable accuracy depending on the laboratorian's skill level. Thus automating microscopy is a goal in cell biology. Current methods involve hand-selecting features from cell images as inputs to a variety of standard machine learning classifiers. Underrepresented in this filed, yet successful in practice, is the convolutional neural network that learns features from fine-grained images. This paper compares the performance of a convolutional neural network model with other models to determine the validity of using whole cell images rather than hand-selected features for acute lymphoblastic leukemia classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络用于急性淋巴细胞白血病的自动细粒度图像分类
急性淋巴细胞白血病可以通过一系列的检查来诊断,其中包括对染色的外周血涂片进行微创显微镜检查。人工显微镜是一个缓慢的过程,准确度取决于实验室人员的技能水平。因此,自动化显微镜是细胞生物学的一个目标。目前的方法包括从细胞图像中手动选择特征作为各种标准机器学习分类器的输入。卷积神经网络从细粒度图像中学习特征,这一领域的代表性不足,但在实践中取得了成功。本文比较了卷积神经网络模型与其他模型的性能,以确定使用全细胞图像而不是手工选择的特征进行急性淋巴细胞白血病分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Extraction and Categorization from Watermark Scientific Document in Bulk Locating Heartbeats from Electrocardiograms and Other Correlated Signals Combining Deep Learning and JSEG Cuda Segmentation Algorithm for Electrical Components Recognition An Oppositional Learning Prediction Operator for Simulated Kalman Filter Clustering Method for Financial Time Series with Co-Movement Relationship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1