{"title":"A SUPERVISED MULTI-CHANNEL SPEECH ENHANCEMENT ALGORITHM BASED ON BAYESIAN NMF MODEL","authors":"Hanwook Chung, É. Plourde, B. Champagne","doi":"10.1109/GlobalSIP.2018.8646634","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a supervised multi-channel speech enhancement algorithm based on a Bayesian multi-channel non-negative matrix factorization (MNMF) model. In the proposed framework, we consider the probabilistic generative model (PGM) of MNMF, specified by Poisson-distributed latent variables and gamma-distributed priors. In the training stage, the MNMF parameters of the speech and noise sources are estimated via the variational Bayesian expectation-maximization (VBEM) algorithm. In the enhancement stage, the clean speech signal is estimated via the MNMF-based minimum variance distortionless response (MVDR) beamformer. To further improve the enhanced speech quality, we efficiently combine the MNMF-based beamforming technique with a classical unsupervised single-channel enhancement method. Experiments show that the proposed method can provide better enhancement performance than the selected benchmarks.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":" 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a supervised multi-channel speech enhancement algorithm based on a Bayesian multi-channel non-negative matrix factorization (MNMF) model. In the proposed framework, we consider the probabilistic generative model (PGM) of MNMF, specified by Poisson-distributed latent variables and gamma-distributed priors. In the training stage, the MNMF parameters of the speech and noise sources are estimated via the variational Bayesian expectation-maximization (VBEM) algorithm. In the enhancement stage, the clean speech signal is estimated via the MNMF-based minimum variance distortionless response (MVDR) beamformer. To further improve the enhanced speech quality, we efficiently combine the MNMF-based beamforming technique with a classical unsupervised single-channel enhancement method. Experiments show that the proposed method can provide better enhancement performance than the selected benchmarks.